

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

On the coefficients of the Alekseev–Torossian associator

ALGEBRA

Hidekazu Furusho

Graduate School of Mathematics, Nagoya University, Chikusa-ku, Furo-cho, Nagoya, 464-8602, Japan

ARTICLE INFO

Article history: Received 17 August 2017 Available online 2 April 2018 Communicated by Masaki Kashiwara

Keywords: Associator Iterated integral Kontsevich weight Lie graph Configuration space

Contents

0.	Introduction	35
1.	Kontsevich's eye	35
2.	Kontsevich weight forms of Lie graphs	36
3.	Main results	38
4.	Coefficients in depth 1 and 2	74
Ackno	weldgments	77
Refere	ences	77

ABSTRACT

This paper explains a method to calculate the coefficients of the Alekseev–Torossian associator as linear combinations of iterated integrals of Kontsevich weight forms of Lie graphs. © 2018 Elsevier Inc. All rights reserved.

E-mail address: furusho@math.nagoya-u.ac.jp.

 $[\]label{eq:https://doi.org/10.1016/j.jalgebra.2018.03.023} 0021\mbox{-}8693/\ensuremath{\odot}\ 2018$ Elsevier Inc. All rights reserved.

0. Introduction

Associators are group-like non-commutative formal power series with two variables which were subject to the pentagon equation and the hexagon equations in [9] (actually it was shown in [13] that the former implies the latter). The notion is involved with wide area of mathematics, the quantization of Lie-bialgebras (cf. [10]), the combinatorial reconstruction of the universal Vassiliev knot invariant (cf. [5,6,15,19,21]), the proof of formality of chain operad of little discs (cf. [24,23]), the solution of Kashiwara–Vergne conjecture (cf. [3]), etc.

A typical example of associators is the KZ-associator Φ_{KZ} in the algebra $\mathbb{C}\langle\langle A, B \rangle\rangle$ of power series over \mathbb{C} with variables A and B, which was constructed by two fundamental solutions of the KZ (Knizhnik–Zamolodchikov) equation in [9]. In [20] Theorem A.8 and [12] Proposition 3.2.3, it was given a method to calculate its coefficients as linear combinations of *multiple zeta values*, the real numbers defined by the following power series

$$\zeta(k_1,\ldots,k_m) := \sum_{0 < n_1 < \cdots < n_m} \frac{1}{n_1^{k_1} \cdots n_m^{k_m}}$$

with $k_1, \ldots, k_m \in \mathbb{N}$ and $k_m > 1$ (the condition to be convergent).

The AT-associator Φ_{AT} is another example of associators. It was introduced by Alekseev and Torossian [2] as an 'associator in TAut₃' and later shown to be an associator in $\mathbb{R}\langle\langle A, B \rangle\rangle$ by Ševera and Willwacher [23]. It was constructed by a parallel transport of the AT-equation (cf. §3) on Kontsevich's eye $\overline{C}_{2,0}$ (cf. §1). This paper discusses a ATcounterpart of the results of [20] and [12]. We give a method in Theorem 3.3 to describe coefficients of the AT-associator Φ_{AT} in terms of linear combinations of iterated integrals of Kontsevich weight forms of Lie graphs (cf. §2) on $\overline{C}_{2,0}$ and execute computations in lower depth in §4.

We note that similar (or possibly related) arguments are observed in [4] Theorem 8.0.4.5 where Alm described Lyndon word expansion of the 1-form ω_{AT} , while in this paper we calculate free word expansion of its parallel transport Φ_{AT} .

1. Kontsevich's eye

We will recall the compactified configuration spaces [16]. Let $n \ge 1$. For a topological space X, we define $\operatorname{Conf}_n(X) := \{(x_1, \ldots, x_n) \mid x_i \ne x_j \ (i \ne j)\}$. The group $\operatorname{Aff}_+ := \{x \mapsto ax + b \mid a \in \mathbb{R}^{\times}_+, b \in \mathbb{C}\}$ acts on $\operatorname{Conf}_n(\mathbb{C})$ diagonally by rescallings and parallel translations. We denote the quotient by

$$C_n := \operatorname{Conf}_n(\mathbb{C})/\operatorname{Aff}_+$$

for $n \ge 2$, which is a connected oriented smooth manifold with dimension 2n - 3. E.g. $C_2 \simeq S^1$ and $C_3 \simeq S^1 \times (\mathbb{P}^1(\mathbb{C}) \setminus \{0, 1, \infty\}).$

Download English Version:

https://daneshyari.com/en/article/8896027

Download Persian Version:

https://daneshyari.com/article/8896027

Daneshyari.com