On the coefficients of the Alekseev-Torossian associator

Hidekazu Furusho
Graduate School of Mathematics, Nagoya University, Chikusa-ku, Furo-cho, Nagoya, 464-8602, Japan

A R T I C L E I N F O

Article history:

Received 17 August 2017
Available online 2 April 2018
Communicated by Masaki Kashiwara

A B S T R A C T

This paper explains a method to calculate the coefficients of the Alekseev-Torossian associator as linear combinations of iterated integrals of Kontsevich weight forms of Lie graphs.
© 2018 Elsevier Inc. All rights reserved.

[^0]
Contents

0. Introduction 365
1. Kontsevich's eye 365
2. Kontsevich weight forms of Lie graphs 366
3. Main results 368
4. Coefficients in depth 1 and 2 374
Acknowledgments 377
References 377

[^1]https://doi.org/10.1016/j.jalgebra.2018.03.023
0021-8693/© 2018 Elsevier Inc. All rights reserved.

0. Introduction

Associators are group-like non-commutative formal power series with two variables which were subject to the pentagon equation and the hexagon equations in [9] (actually it was shown in [13] that the former implies the latter). The notion is involved with wide area of mathematics, the quantization of Lie-bialgebras (cf. [10]), the combinatorial reconstruction of the universal Vassiliev knot invariant (cf. [5,6,15,19,21]), the proof of formality of chain operad of little discs (cf. [24,23]), the solution of Kashiwara-Vergne conjecture (cf. [3]), etc.

A typical example of associators is the $K Z$-associator Φ_{KZ} in the algebra $\mathbb{C}\langle\langle A, B\rangle\rangle$ of power series over \mathbb{C} with variables A and B, which was constructed by two fundamental solutions of the KZ (Knizhnik-Zamolodchikov) equation in [9]. In [20] Theorem A. 8 and [12] Proposition 3.2.3, it was given a method to calculate its coefficients as linear combinations of multiple zeta values, the real numbers defined by the following power series

$$
\zeta\left(k_{1}, \ldots, k_{m}\right):=\sum_{0<n_{1}<\cdots<n_{m}} \frac{1}{n_{1}^{k_{1}} \cdots n_{m}^{k_{m}}}
$$

with $k_{1}, \ldots, k_{m} \in \mathbb{N}$ and $k_{m}>1$ (the condition to be convergent).
The AT-associator Φ_{AT} is another example of associators. It was introduced by Alekseev and Torossian [2] as an 'associator in TAut_{3} ' and later shown to be an associator in $\mathbb{R}\langle\langle A, B\rangle\rangle$ by Ševera and Willwacher [23]. It was constructed by a parallel transport of the AT-equation (cf. §3) on Kontsevich's eye $\bar{C}_{2,0}$ (cf. §1). This paper discusses a ATcounterpart of the results of [20] and [12]. We give a method in Theorem 3.3 to describe coefficients of the AT-associator $\Phi_{\text {AT }}$ in terms of linear combinations of iterated integrals of Kontsevich weight forms of Lie graphs (cf. §2) on $\bar{C}_{2,0}$ and execute computations in lower depth in $\S 4$.

We note that similar (or possibly related) arguments are observed in [4] Theorem 8.0.4.5 where Alm described Lyndon word expansion of the 1-form ω_{AT}, while in this paper we calculate free word expansion of its parallel transport Φ_{AT}.

1. Kontsevich's eye

We will recall the compactified configuration spaces [16]. Let $n \geqslant 1$. For a topological space X, we define $\operatorname{Conf}_{n}(X):=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{i} \neq x_{j}(i \neq j)\right\}$. The group Aff ${ }_{+}:=$ $\left\{x \mapsto a x+b \mid a \in \mathbb{R}_{+}^{\times}, b \in \mathbb{C}\right\}$ acts on $\operatorname{Conf}_{n}(\mathbb{C})$ diagonally by rescallings and parallel translations. We denote the quotient by

$$
C_{n}:=\operatorname{Conf}_{n}(\mathbb{C}) / \mathrm{Aff}_{+}
$$

for $n \geqslant 2$, which is a connected oriented smooth manifold with dimension $2 n-3$. E.g. $C_{2} \simeq S^{1}$ and $C_{3} \simeq S^{1} \times\left(\mathrm{P}^{1}(\mathbb{C}) \backslash\{0,1, \infty\}\right)$.

https://daneshyari.com/en/article/8896027

Download Persian Version:

https://daneshyari.com/article/8896027

Daneshyari.com

[^0]: Keywords:
 Associator
 Iterated integral
 Kontsevich weight
 Lie graph
 Configuration space

[^1]: E-mail address: furusho@math.nagoya-u.ac.jp.

