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We prove a corrected version of [1, Theorem 5.4].
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Our aim is to correct an inaccuracy in [1, Lemma 5.3] which resulted in a flaw in [1, 
Theorem 5.4]. To this end, let us introduce some notations, most of which were used 
in [1] (for the inverse semigroup terminology see the monograph [4]). Given an inverse 
semigroup S, we denote by σS the minimum group congruence on S and by G(S) the 
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maximum group image S/σS of S. The σS-class of an element s ∈ S (seen as a subset of 
S) will be denoted by σS(s), and σ�

S will stand for the natural epimorphism S → G(S). 
We also recall that the Exel’s monoid [2] of a group G is the universal semigroup S(G)
generated by the symbols [g], g ∈ G, modulo the relations

(i) [g−1][g][h] = [g−1][gh];
(ii) [g][h][h−1] = [gh][h−1];
(iii) [g][1G] = [g].

The elements εg = [g][g−1] are commuting idempotents of S(G), and each s ∈ S(G) can 
be represented as εh1 . . . εhn

[g], where n ≥ 0, hi �= hj for i �= j and hi /∈ {1G, g} for all i. 
Moreover, such a representation of s is unique up to a permutation of the idempotents εhi

(see [2, Propositions 2.5 and 3.2]). It is well-known [3] that S(G) is a max-generated [5]
F -inverse monoid, where max σS(G)(εh1 . . . εhn

[g]) = [g] and G(S(G)) ∼= G.
First, we would like to make some comments on [1, Lemma 5.1], whose statement 

we reproduce here with some slight modification in notations and the specification of π̃
in (ii).

Lemma 1 (Lemma 5.1 from [1]). For an epimorphism π : S → T of inverse semigroups 
the following are equivalent:

(i) kerπ ⊆ σS;
(ii) π̃ : G(S) → G(T ) mapping σ�

S(s) to σ�
T (π(s)) is an isomorphism.

Moreover, in this case

π(σS(s)) = σT (π(s)) (1)

for all s ∈ S.

Observe that if S and T are F -inverse monoids and π : S → T is an epimorphism 
satisfying (1), then

π(max σS(s)) = max σT (π(s)). (2)

Indeed, π, being a homomorphism, respects the natural partial orders on S and T , and 
since by (1) any t ∈ σT (π(s)) is of the form π(s′) for some s′ ∈ σS(s), we have that 
t = π(s′) ≤ π(max σS(s)).

The following lemma, proved in [1], had a mistake in the “uniqueness” part of its 
statement.
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