

Contents lists available at ScienceDirect

Journal of Algebra

Corrigendum

Corrigendum to "Partial cohomology of groups" [J. Algebra 427 (2015) 142–182]

Mikhailo Dokuchaev^a, Mykola Khrypchenko^{b,*}

ARTICLE INFO

 $A\ B\ S\ T\ R\ A\ C\ T$

Article history: Received 29 January 2018 Available online 11 April 2018 Communicated by Volodymyr Mazorchuk

MSC:

primary 20M18 secondary 20M15

Keywords:
Max-generated F-inverse monoid
Minimum group congruence
Exel's monoid
Epimorphism

We prove a corrected version of [1, Theorem 5.4]. © 2018 Elsevier Inc. All rights reserved.

Our aim is to correct an inaccuracy in [1, Lemma 5.3] which resulted in a flaw in [1, Theorem 5.4]. To this end, let us introduce some notations, most of which were used in [1] (for the inverse semigroup terminology see the monograph [4]). Given an inverse semigroup S, we denote by σ_S the minimum group congruence on S and by $\mathcal{G}(S)$ the

^a Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão, 1010, São Paulo, SP, CEP: 05508-090, Brazil

^b Departamento de Matemática, Universidade Federal de Santa Catarina, Campus Reitor João David Ferreira Lima, Florianópolis, SC, CEP: 88040-900, Brazil

DOI of original article: https://doi.org/10.1016/j.jalgebra.2014.11.030.

^{*} Corresponding author.

E-mail addresses: dokucha@gmail.com (M. Dokuchaev), nskhripchenko@gmail.com (M. Khrypchenko).

maximum group image S/σ_S of S. The σ_S -class of an element $s \in S$ (seen as a subset of S) will be denoted by $\sigma_S(s)$, and σ_S^{\natural} will stand for the natural epimorphism $S \to \mathcal{G}(S)$. We also recall that the Exel's monoid [2] of a group G is the universal semigroup S(G) generated by the symbols [g], $g \in G$, modulo the relations

- (i) $[g^{-1}][g][h] = [g^{-1}][gh];$
- (ii) $[g][h][h^{-1}] = [gh][h^{-1}];$
- (iii) $[g][1_G] = [g].$

The elements $\varepsilon_g = [g][g^{-1}]$ are commuting idempotents of $\mathcal{S}(G)$, and each $s \in \mathcal{S}(G)$ can be represented as $\varepsilon_{h_1} \dots \varepsilon_{h_n}[g]$, where $n \geq 0$, $h_i \neq h_j$ for $i \neq j$ and $h_i \notin \{1_G, g\}$ for all i. Moreover, such a representation of s is unique up to a permutation of the idempotents ε_{h_i} (see [2, Propositions 2.5 and 3.2]). It is well-known [3] that $\mathcal{S}(G)$ is a max-generated [5] F-inverse monoid, where $\max \sigma_{\mathcal{S}(G)}(\varepsilon_{h_1} \dots \varepsilon_{h_n}[g]) = [g]$ and $\mathcal{G}(\mathcal{S}(G)) \cong G$.

First, we would like to make some comments on [1, Lemma 5.1], whose statement we reproduce here with some slight modification in notations and the specification of $\tilde{\pi}$ in (ii).

Lemma 1 (Lemma 5.1 from [1]). For an epimorphism $\pi: S \to T$ of inverse semigroups the following are equivalent:

- (i) $\ker \pi \subseteq \sigma_S$;
- (ii) $\tilde{\pi}: \mathcal{G}(S) \to \mathcal{G}(T)$ mapping $\sigma_S^{\natural}(s)$ to $\sigma_T^{\natural}(\pi(s))$ is an isomorphism.

Moreover, in this case

$$\pi(\sigma_S(s)) = \sigma_T(\pi(s)) \tag{1}$$

for all $s \in S$.

Observe that if S and T are F-inverse monoids and $\pi: S \to T$ is an epimorphism satisfying (1), then

$$\pi(\max \sigma_S(s)) = \max \sigma_T(\pi(s)). \tag{2}$$

Indeed, π , being a homomorphism, respects the natural partial orders on S and T, and since by (1) any $t \in \sigma_T(\pi(s))$ is of the form $\pi(s')$ for some $s' \in \sigma_S(s)$, we have that $t = \pi(s') \leq \pi(\max \sigma_S(s))$.

The following lemma, proved in [1], had a mistake in the "uniqueness" part of its statement.

Download English Version:

https://daneshyari.com/en/article/8896044

Download Persian Version:

https://daneshyari.com/article/8896044

<u>Daneshyari.com</u>