

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Towards functor exponentiation

Mikhail Khovanov^a, Yin Tian^{b,*}

- ^a Department of Mathematics, Columbia University, New York, NY 10027, United States
- ^b Yau Mathematical Sciences Center, Tsinghua University, Beijing 100084, China

ARTICLE INFO

Article history: Received 8 December 2017 Available online 8 March 2018 Communicated by Volodymyr Mazorchuk

MSC: 18D10 17B37 16E20

Keywords: Categorification Quantum \mathfrak{sl}_2 Exponentiation Diagrammatic category

ABSTRACT

We consider a possible framework to categorify the exponential map $\exp(-f)$ given the categorification of a generator f of \mathfrak{sl}_2 by Lauda. In this setup the Taylor expansions of $\exp(-f)$ and $\exp(f)$ turn into complexes built out of categorified divided powers of f. Hom spaces between tensor powers of categorified f are given by diagrammatics combining nilHecke algebra relations with those for a additional "short strand" generator. The proposed framework is only an approximation to categorification of exponentiation, because the functors categorifying $\exp(f)$ and $\exp(-f)$ are not invertible.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

The exponential function is fundamental in mathematics. In Lie theory, the exponential map connects a Lie algebra and its Lie group. Idempotented version of quantized universal enveloping algebras of simple Lie algebras have been categorified [3,4,8]. This

^{*} Corresponding author.

 $[\]label{lem:energy:equation:equation:equation} E\text{-}mail\ addresses:\ khovanov@math.columbia.edu}\ (M.\ Khovanov),\ ytian@math.tsinghua.edu.cn}\ (Y.\ Tian).$

paper can be viewed as a small step towards lifting the exponential map to the categorical level.

We focus on the case of \mathfrak{sl}_2 . Consider the expansion

$$\exp(-f) = \sum_{k>0} (-1)^k \frac{f^k}{k!},$$

in a completion of the universal enveloping algebra of \mathfrak{sl}_2 , where $f \in \mathfrak{sl}_2$ is a Chevalley generator of the lower-triangular matrix. Categorification of the divided power $f^{(k)} = \frac{f^k}{k!}$ and of its quantized version $\frac{f^k}{[k]!}$ naturally appears in the categorified quantum \mathfrak{sl}_2 [7]. The generator f is lifted to a bimodule \mathcal{F}' over a direct sum of the nilHecke algebras $\bigoplus_{n>0} NH_n$.

The tensor powers $\mathcal{F}'^{k} = \mathcal{F}'^{\otimes k}$ of the bimodule admit a direct sum decomposition $\mathcal{F}'^{k} \cong \bigoplus_{k!} \mathcal{F}'^{(k)}$. It is natural to expect lifting $\exp(-f)$ to a cochain complex whose degree k component is $\mathcal{F}'^{(k)}$ for $k \geq 0$. A nontrivial differential is needed to link adjacent components.

The diagrammatic approach is widely used in categorification and plays a significant role in the present paper as well. We provide a modification \widetilde{NH} of $\bigoplus_{n\geq 0} NH_n$ by adding an extra generator to the nilHecke algebras The new generator is described by a short strand which links NH_n and NH_{n+1} together. The induction \widetilde{NH} -bimodule still exists, denoted \mathcal{F} . Short strand induces a \widetilde{NH} -bimodule homomorphism $\widetilde{NH} \to \mathcal{F}$. This morphism and its suitable generalizations $\mathcal{F}^k \to \mathcal{F}^{k+1}$ define a differential on $\bigoplus_{k\geq 0} \mathcal{F}^{(k)}[-k]$. The resulting complex descends to an alternating sum $\sum_{k\geq 0} (-1)^k [\mathcal{F}^{(k)}]$ in the Grothendieck ring of the derived category of \widetilde{NH} -bimodules.

Due to the existence of the short strand, the extension group $\operatorname{Ext}^1(\mathcal{F},\widetilde{NH})$ of bimodules is nontrivial. We lift the expansion $\exp(f) = \sum_{k \geq 0} f^{(k)}$ to a complex $\left(\bigoplus_{k \geq 0} \mathcal{F}^{(k)}, d\right)$, where the differential d consists of certain elements of Ext^1 -groups. The absence of the alternating sign in the expansion of $\exp(f)$ comes from the fact that it cancels against the sign coming from the use of Ext^1 -groups.

Unfortunately, the two resulting complexes, lifting $\exp(-f)$ and $\exp(f)$, respectively, are not invertible, as explained in Section 4. A more elaborate or just a different construction is needed to more adequately categorify exponentiation.

Problem 1.1. Find a framework for categorification of the exponential map, where an object \mathcal{F} in a monoidal triangulated category \mathcal{C} lifts to two invertible objects $\exp(\mathcal{F})$ and $\exp(-\mathcal{F})$ in some monoidal triangulated category \mathcal{C}^e . The objects should descend to $\exp([\mathcal{F}])$ and $\exp(-[\mathcal{F}])$ in the Grothendieck ring of \mathcal{C}^e , where $[\mathcal{F}]$ is the class of \mathcal{F} in the Grothendieck ring of \mathcal{C} . The Grothendieck rings of \mathcal{C} and \mathcal{C}^e should be suitably related.

Download English Version:

https://daneshyari.com/en/article/8896053

Download Persian Version:

https://daneshyari.com/article/8896053

Daneshyari.com