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1. Introduction

Suppose that an algebraic reductive group G over an algebraically closed field k is
given. When k is an algebraic closure of a finite field with some fixed Frobenius morphism,
Deligne and Lusztig [3] defined X (w) for any element w in the Weyl group of G which
is now called a Deligne-Lusztig variety. Likewise, we define Y, 4 to be the subvariety
of the flag variety of G, consisting of Borel subgroups B C G such that B and gBg~*
are in relative position w. Equivalently, Y, , is obtained from X (w) by replacing the
Frobenius morphism with conjugation by g € G. The variety ), 4 is studied by e.g. [9],
[12], [15], [17], [18], [10], ete. Also when w is the identity, it coincides with the definition
of the Springer fiber corresponding to g € G.

The main result of this paper asserts that the Euler characteristic of V,, 4, denoted by
X(Yw.g), is easy to calculate for G = GL, (k). Indeed, it only depends on the unipotent
part of g in its Jordan decomposition and the conjugacy class of w in the Weyl group of G.
Also there is a simple combinatorial formula to calculate such x().,¢). This generalizes
the well-known formula of the Euler characteristic of Springer fibers for type A, cf. [20],
[14], [6]. We expect that similar properties hold for reductive groups of other types.

2. Some notations and definitions

Here, we fix some notations and definitions which are used throughout this paper. For
a group H and subgroup K C H, we let Ny (K) be the normalizer of K in H. For any
element h € H, we denote the centralizer of h in H by Cg(h). We define H to be the
set of conjugacy classes in H. For any C € H, we set Ci(C) to be Cg(h) for any h € C,
which is well-defined up to conjugacy. If H is a topological group, then we set H? to be
the identity component of H which is a topological subgroup of H.

For a finite dimensional C-algebra A, we denote by Irr(A) the set of irreducible repre-
sentations of A over C. If H is a finite group, we write Irr(H) instead of Irr(C[H]). Let
Idy € Irr(H) be the trivial representation of H. We set H to be the set of all virtual
characters of H over C, which is equivalent to the Z-span of Irr(H). For h € H and
E € H, we denote by tr(h, F) the character value of E at h. For C € H define tr(C, F)
to be tr(h, E) at any h € C.

Let k be an algebraically closed field of characteristic p (which can be zero) and
G = GL, (k). For a variety X over k and a prime ¢ # p, x(X) denotes the (¢-adic) Euler
characteristic of X defined by the following formula.

X(X) := > (=1)" dimg; HJ(X, Q)
i€
(Note that Ziez(—lidim@Hé(X, @)_: > iez(—1)"dimg; H'(X, Q) by [11].) Also we
denote the constant Qg-sheaf on X by Qg .
We fix a standard basis ey, ..., e, € k™ and consider G as the set of invertible n x n

matrices with respect to this fixed basis. Let By C G be the subgroup of G consisting of all
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