

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Axiomatic theory of Burnside rings. (I)

ALGEBRA

Tomoyuki Yoshida^a, Fumihito Oda^{b,*}, Yugen Takegahara^c

^a Hokusei Gakuen University, Sapporo, Japan

^b Dept. Mathematics, Kindai University, Higashi Osaka, Japan

^c Dept. Mathematics, Muroran Industrial University, Muroran, Japan

A R T I C L E I N F O

Article history: Received 24 June 2017 Available online 27 March 2018 Communicated by M. Broué

Keywords: Burnside ring Finite group Category

ABSTRACT

In this paper, we study abstract Burnside rings of essentially finite categories. Under unique epi-mono factorization property and the existence of coequalizers for some kind, we prove the existence of a fundamental exact sequence for ABR. Furthermore, an ABR can be embedded into a direct product of rational character rings.

@ 2018 Published by Elsevier Inc.

0. Introduction

0.1. Witt construction

In order to categorically formulate the theory of Burnside rings of finite groups, we start with Witt ring construction. If a set Ω is equipped with a map $\varphi : \Omega \longrightarrow \widetilde{\Omega}$ into an algebraic system $\widetilde{\Omega}$ satisfying the following conditions:

- (a) φ is injective.
- (b) the image of φ is a subalgebra of Ω ,

* Corresponding author.

 $^{^{\}pm}\,$ This work was supported by JSPS KAKENHI Grant Number 25400001.

E-mail addresses: t-yoshida@hokusei.ac.jp (T. Yoshida), odaf@math.kindai.ac.jp (F. Oda), yugen@mmm.muroran-it.ac.jp (Y. Takegahara).

then the set Ω becomes an algebra system by which φ is an algebra homomorphism. Constructing an algebra Ω by this way is called **Witt construction**. The homomorphism φ is called a **ghost map**. The algebra $\widetilde{\Omega}$ is called a **ghost algebra**.

Example 0.1 (Witt ring). The most famous example of a Witt construction is the Witt ring. Let $W(\mathbb{Z})$ be the set of sequences $x = (x_1, x_2, \cdots)$ of integers. For each $n \in \mathbb{Z}$, define a map

$$w_n: W(\mathbb{Z}) \longrightarrow \mathbb{Z}; x \mapsto \sum_{d|n} dx_d^{n/d},$$

and then we have a map into the product ring

$$w = (w_n) : W(\mathbb{Z}) \longrightarrow \mathbb{Z}^{\mathbb{N}}; x \mapsto (w_n(x)).$$

As is well known $W(\mathbb{Z})$ has a ring structure called the Witt ring with injective ring homomorphisms w. See [10] and [11].

Example 0.2 (λ -ring). The set $t\mathbb{Z}[[t]]$ of power series without constant term is a commutative ring with multiplication defined by Hadamard product

$$\left(\sum_{n\geq 1}a_nt^n\right)*\left(\sum_{n\geq 1}b_nt^n\right)=\left(\sum_{n\geq 1}a_nb_nt^n\right).$$

Let $\Lambda(\mathbb{Z}) := 1 + t\mathbb{Z}[[t]]$ be the set of unitary power series in \mathbb{Z} . Then the map

$$L: \Lambda(\mathbb{Z}) \longrightarrow t\mathbb{Z}[[t]]; a(t) \mapsto t\frac{d}{dt}\log a(t)$$

is an injective and its image is a subring of $t\mathbb{Z}[[t]]$. The resulting Witt construction gives a λ -ring.

This ring is isomorphic to the ring $W(\mathbb{Z})$ of universal Witt vectors and also to the complete Burnside ring $\widehat{\Omega}(\widehat{C})$ of the infinite cyclic group \widehat{C} . These rings are all defined by Witt construction:

Download English Version:

https://daneshyari.com/en/article/8896074

Download Persian Version:

https://daneshyari.com/article/8896074

Daneshyari.com