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the existence of a fundamental exact sequence for ABR.

I% ; Furthermore, an ABR can be embedded into a direct product
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Burnside ring of rational character rings.
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Category

0. Introduction

0.1. Witt construction

In order to categorically formulate the theory of Burnside rings of finite groups, we
start with Witt ring construction. If a set €2 is equipped with a map ¢ : Q& — Q into an
algebraic system () satisfying the following conditions:

(a) ¢ is injective.
(b) the image of ¢ is a subalgebra of 2,
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then the set 2 becomes an algebra system by which ¢ is an algebra homomorphism.
Constructing an algebra ) by this way is called Witt construction. The homomorphism ¢
is called a ghost map. The algebra (2 is called a ghost algebra.

Example 0.1 (Witt ring). The most famous example of a Witt construction is the Witt
ring. Let W(Z) be the set of sequences x = (z1,xa,---) of integers. For each n € Z,
define a map

Wy W(Z) — Zjx — dez/d,
d|n

and then we have a map into the product ring
w = (wy) : W(Z) — ZN; z — (wn(x)).

As is well known W(Z) has a ring structure called the Witt ring with injective ring
homomorphisms w. See [10] and [11].

Example 0.2 (A-ring). The set tZ][[t]] of power series without constant term is a commu-
tative ring with multiplication defined by Hadamard product

Zant" * ant" = Zanbnt”

n>1 n>1 n>1

Let A(Z) := 1+ tZ[[t]] be the set of unitary power series in Z. Then the map

L: ANZ) — tZ][t]];a(t) — t% log a(t)
is an injective and its image is a subring of tZ[[t]]. The resulting Witt construction gives
a A-ring.
This ring is isomorphic to the ring W(Z) of universal Witt vectors and also to the
complete Burnside ring ﬁ(é) of the infinite cyclic group C. These rings are all defined
by Witt construction:
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