# On the asymptotic linearity of reduction number <br> Dancheng Lu <br> School of Mathematical Sciences, Soochow University, 215006 Suzhou, PR China 

## A R T I C L E I N F O

## Article history:

Received 16 October 2016
Available online xxxx
Communicated by Steven Dale
Cutkosky

## $M S C$ :

primary 13D45
secondary 13 C 99

## A B S T R A C T

Let $R$ be a standard graded algebra over an infinite field $\mathbb{K}$ and $M$ a finitely generated $\mathbb{Z}$-graded $R$-module. For any graded ideal $I \subseteq R_{+}$of $R$, we show that the functions $D\left(I^{n} M\right), r\left(I^{n} M\right)$ and $r\left(M / I^{n} M\right)$ are all asymptotically linear. Here $r(\bullet)$ and $D(\bullet)$ stand for the reduction number and the maximal degree of minimal generators of a graded module - respectively.
© 2018 Elsevier Inc. All rights reserved.

## Keywords:

Standard graded algebra
Reduction number
Asymptotic linearity
Slope

## 1. Introduction

Throughout this paper, we always assume that $R=\bigoplus_{n \geq 0} R_{n}$ is a standard graded Noetherian algebra over an infinite field $\mathbb{K}$. Here "standard graded" means that $R_{0}=\mathbb{K}$ and $R=\mathbb{K}\left[R_{1}\right]$. As usual, a nonzero element in $R_{1}$ is called a linear form of $R$. Let $M$ be a finitely generated nonzero $\mathbb{Z}$-graded $R$-module.

Definition 1.1. A graded ideal $J$ of $R$ is called an $M$-reduction if $J$ is generated by linear forms such that $(J M)_{n}=M_{n}$ for $n \gg 0$. An $M$-reduction is called minimal if it does

[^0]not contain any other $M$-reduction. The reduction number of $M$ with respect to $J$ is defined to be
$$
r_{J}(M):=\max \left\{n \in \mathbb{Z}: \quad(J M)_{n} \neq M_{n}\right\} .
$$

The reduction number of $M$ is

$$
r(M):=\min \left\{r_{J}(M): J \text { is a minimal } M \text {-reduction }\right\}
$$

Let $I$ be a graded ideal of $R$. In this paper, we are interested in the following natural problem: Is $r\left(I^{n} M\right)$ a linear function of $n$ for all $n \gg 0$ ? This problem is inspired by the asymptotic behaviour of the Castelnuovo-Mumford regularity reg $\left(I^{n} M\right)$. It was first shown in [3] and [7] for the case $R$ being a polynomial ring over a field, and then in [10] for the general case (namely, when $R$ is a standard graded algebra over a Noetherian ring with unity) that $\operatorname{reg}\left(I^{n} M\right)$ is a linear function of $n$ for all $n \gg 0$. Since the reduction number $r\left(I^{n} M\right)$ is less than or equal to the Castelnuovo-Mumford regularity reg $\left(I^{n} M\right)$ [9, Proposition 3.2], it is bounded above by a linear function of $n$.

A very useful result for investigating the asymptotic property of regularity, which was proved in [10], will play a key role in our research. Let us recall this result. Denote by $S:=A\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right]$ the polynomial ring over a commutative Noetherian ring $A$ with unity. We may view $S$ as a bigraded ring with $\operatorname{deg} x_{i}=(1,0)$ for $i=1, \ldots, n$ and $\operatorname{deg} y_{j}=\left(d_{j}, 1\right)$ for $j=1, \ldots, m$. Here $d_{1}, \ldots, d_{m}$ is a sequence of non-negative integers. Let $\mathcal{U}$ be a finitely generated bigraded module over $S$. For a fixed number $n$ put

$$
\mathcal{U}_{n}:=\bigoplus_{a \in \mathbb{Z}} \mathcal{U}_{(a, n)}
$$

Clearly, $\mathcal{U}_{n}$ is a finitely generated graded module over the naturally graded ring $A\left[x_{1}, \ldots, x_{n}\right]$. It was proved in [10, Theorem 2.2] that $\operatorname{reg}\left(\mathcal{U}_{n}\right)$ is asymptotically a linear function with slope $\leq \max \left\{d_{1}, \ldots, d_{m}\right\}$. The arguments of our main results are all based on this theorem.

To state our main results, we denote by $D(M)$ and $d(M)$ the largest and least degrees of a minimal system of generators of $M$ respectively. In other words,

$$
D(M):=\max \left\{n \in \mathbb{Z}: \quad\left(M / R_{+} M\right)_{n} \neq 0\right\} \text { and } d(M):=\min \left\{n \in \mathbb{Z}: M_{n} \neq 0\right\}
$$

Let $I$ be a graded ideal of $R$. A graded ideal $J \subseteq I$ is called an $M$-reduction of $I$ if $J I^{n} M=I^{n+1} M$ for some $n>0$. Note that we do not require that $J$ is generated by linear forms, hence this concept is very different from the notion of $M$-reduction as given in Definition 1.1. The integer $\rho_{I}(M)$ is defined to be

$$
\rho_{I}(M):=\min \{D(J): J \text { is an } M \text {-reduction of } I\}
$$

We first give a positive answer to the above question as follows.

# https://daneshyari.com/en/article/8896090 

Download Persian Version:

## https://daneshyari.com/article/8896090

## Daneshyari.com


[^0]:    E-mail address: ludancheng@suda.edu.cn.

