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We work over an algebraically closed field of characteristic 
zero. The purpose of this paper is to prove that the complete 
linear system of the double point divisors of smooth birational-
divisors on conical rational scrolls are base-point-free.
A smooth birational-divisor on a conical rational scroll has 
a nonbirational inner center, that is a point on it from which 
the linear projection gives nonbirational map to its image. 
In the previous paper by the author, it was shown that for 
a projective variety without nonbirational inner centers, its 
double point divisor is base-point-free.
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0. Introduction

We work over an algebraically closed field k of characteristic zero. Let X ⊆ P
N be a 

nondegenerate (i.e., not contained in any hyperplane of PN) smooth projective variety 
of dimension n ≥ 2, degree d and codimension e = N − n with the canonical line 
bundle ωX . Set OX(1) = OPN (1)|X . Consider the set C(X) of points of X from which 
X is projected nonbirationally onto its image, i.e., C(X) = {u ∈ X|l(X ∩ 〈u, x〉) ≥ 3
for general x ∈ X}. Here l(Z) is the length of a subscheme Z ⊆ P

N and 〈 〉 denotes 
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the linear span in PN . We call such a point a nonbirational inner center of X. The 
purpose of this paper is to show the base-point-freeness of the complete linear system 
|OX(d −n −e −1) ⊗ω∨

X | for some smooth projective variety with nonempty C(X), which 
is called a smooth birational-divisor on a conical rational scroll EP

E defined in (0.2).
Before going to the Main Theorem, we will mention the motivation. For the linear 

system |OX(d − n − 2) ⊗ ω∨
X |, Bayer and Mumford [1] and Bo Ilic [3] studied the base-

point-freeness and the separation of distinct two points of X respectively, by looking at 
divisors of the double-point loci or the ramification loci of projections of X from general 
(e − 1)-points of PN \ X to Pn+1. In [5], considering linear projections of X from the 
linear subspaces spanned by general (e − 1)-points of X, whose double-point loci are 
members of |OX(d − n − e − 1) ⊗ ω∨

X |, we proved the following theorem.

Theorem 0.1. ([5], Theorems 1 and 3) The base locus Bs |OX(d − n − e − 1) ⊗ ω∨
X | of 

the line bundle OX(d − n − e − 1) ⊗ ω∨
X is contained in C(X) unless X is projectively 

equivalent to a scroll over a curve or the Veronese surface in P5.

Here we say that two projective varieties X ⊆ P
N and X ′ ⊆ P

N ′ are projectively 
equivalent if N = N ′ and if there is an automorphism of PN mapping X onto X ′.

On the other hand, if dim C(X) ≥ 1, C(X) contains a line L (see [4], Corollary 6.2) 
and OX(d −n − 2) ⊗ω∨

X |L = OL (see [3], Proposition 3.8 or [5], Example 6.3(3)), where 
such a variety X is called a Roth variety or its isomorphic image by a linear projection. 
As a next step, it is natural to ask the line bundle actually has a base-point on C(X)
or not for the case dim C(X) = 0. One of projective varieties with dim C(X) = 0 is the 
following (see §5 for the remaining cases).

Definition 0.2. For integers μ ≥ 2, b and n ≥ 2, a nondegenerate (not necessarily smooth) 
projective variety X ⊆ P

N of dimension n and codimension e is said to be a birational-
divisor of type (μ, b) on a conical rational scroll EP

E with vertex P ∈ P
N for an ample 

vector bundle E on P1 of rank n if X is the birational image ψ(X̃) of an irreducible and 
reduced divisor X̃ ∈ |OEP

E
(μ) ⊗ p∗OP1(b)| of the projective bundle EP

E := PP1(OP1 ⊕ E)
over P1 such that P = ψ(P̃ ) for the subbundle P̃ := PP1(OP1)(⊆ EP

E ) by a birational 
embedding (i.e., birational onto its image) ψ : EP

E → P
N defined by a base-point-free 

subsystem of |OEP
E
(1)|. Here OEP

E
(1) is the tautological line bundle and p : EP

E → P
1 is 

the projection. Note that e ≤ c1(E) and the equality holds if and only if ψ is defined by 
the complete linear system |OEP

E
(1)|. By Grothendieck’s theorem, we may assume that 

E ∼= ⊕n
i=1OP1(ai) for some positive integers ai with a1 ≤ a2 ≤ · · · ≤ an.

The main result here is the following theorem.

Theorem 0.3. Let X ⊆ P
N be a nondegenerate n-dimensional (n ≥ 2) smooth birational-

divisor on a conical rational scroll EP
E with vertex P ∈ P

N for an ample vector bundle 
E on P1 such that P ∈ C(X). Set d := deg(X), e := codim(X, PN ) and a := c1(E).
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