

Contents lists available at ScienceDirect

Journal of Algebra

The center of the enveloping algebra of the p-Lie algebras \mathfrak{sl}_n , \mathfrak{pgl}_n , \mathfrak{psl}_n , when p divides n

Amiram Braun

Dept. of Mathematics, University of Haifa, Haifa 31905, Israel

ARTICLE INFO

Article history: Received 14 March 2016 Available online 20 March 2018 Communicated by Michel Van den Bergh

 $Keywords: \\ \mathfrak{Fl}_n \\ \mathfrak{pgl}_n \\ \mathfrak{pfl}_n \\ \mathfrak{pfl}_n \\ Enveloping algebra \\ Prime characteristic$

ABSTRACT

Let $\mathfrak{q} = \text{Lie}(G)$, be a reductive Lie algebra over an algebraically closed field F with char F = p > 0. Suppose G satisfies Jantzen's standard assumptions. Then the structure of Z, the center of the enveloping algebra $U(\mathfrak{q})$, is described by (the extended) Veldkamp's theorem. We examine here the deviation of Z from this theorem, in case $\mathfrak{g} = \mathfrak{Sl}_n$, \mathfrak{pgl}_n or \mathfrak{psl}_n and p|n. It is shown that Veldkamp's description is valid for \mathfrak{pgl}_n . This implies that Friedlander–Parshall–Donkin decomposition theorem for $F[\mathfrak{g}]^{\mathfrak{g}}$ holds in case p is good for a semi-simple simply connected G (excluding, if p = 2, A_1 -factors of G). In case $\mathfrak{g} = \mathfrak{Sl}_n$ or $\mathfrak{g} = \mathfrak{PSl}_n$ we prove a fiber product theorem for a polynomial extension of Z. However Veldkamp's description mostly fails for \mathfrak{Sl}_n and \mathfrak{pSl}_n . In particular Z is not Cohen-Macaulay if n > 4, in both cases. Contrary to a result of Kac-Weisfeiler, we show for an odd prime p that $Z_p(U(\mathfrak{Fl}_p))$ and $U(\mathfrak{Fl}_p)^{SL_p}$ do not generate $Z(U(\mathfrak{Sl}_p))$. We also show for \mathfrak{Sl}_n that the codimension of the non-Azumaya locus of Z is at least 2 (if $n \geq 3$), and exceeds 2 if n > 4. This refutes a conjecture of Brown-Goodearl. We then show that Z is factorial (excluding $\mathfrak{q} = \mathfrak{pgl}_2$), thus confirming a conjecture of Premet-Tange. We also verify Humphreys conjecture on the parametrization of blocks, in case p is good for G.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Let $\mathfrak{g} = \mathrm{Lie}(G)$ be the Lie algebra of a reductive connected algebraic group over an algebraically closed field F with char F = p > 0. We say that G satisfies the (Jantzen's) standard assumptions if:

- (1) The derived group DG of G is simply connected,
- (2) p is good for G,
- (3) There exists a G-invariant non-degenerate bilinear form on \mathfrak{g} .

The structure of $Z(U(\mathfrak{g}))$ where $\mathfrak{g} = \operatorname{Lie}(G)$ and G is a reductive algebraic group satisfying the standard assumptions is known as "Veldkamp's theorem". It is a consequence of many contributions due to Veldkamp [45], Kac-Weisfeiler [31], DeConcini-Kac-Procesi [14], Brown-Gordon [10] and Mirkovic-Rumynin [36].

Let $Z_p := Z_p(U(\mathfrak{g}))$ denote the *p*-center of $U(\mathfrak{g})$. This is a polynomial ring. Let $U(\mathfrak{g})^G$ be the so called Harish-Chandra center, where G acts by the adjoint action on $U(\mathfrak{g})$ (extending the one on \mathfrak{g}). It is a consequence of Demazure theorem (and its extension due to Slodoway) that $U(\mathfrak{g})^G$ is a polynomial ring in rank(\mathfrak{g})-variables. The extended version of Veldkamp's theorem can be stated as follows:

Theorem A.

(1) The fiber product theorem:

$$Z_p \bigotimes_{Z_p^G} U(\mathfrak{g})^G \cong Z(U(\mathfrak{g})).$$

In particular $Z(U(\mathfrak{g}))$ is generated by the generators of the p-center and the Harish-Chandra center.

- (2) $Z(U(\mathfrak{g}))$ is a free Z_p -module of rank $p^{\operatorname{rank}(\mathfrak{g})}$. In particular $Z(U(\mathfrak{g}))$ is a complete intersection,
- (3) similar statements hold for $S(\mathfrak{g})^{\mathfrak{g}}$ with relation to $S(\mathfrak{g})^G$ and $S_p(\mathfrak{g})$.

Our goal here is to consider the remaining reductive cases when p is good for G. This amounts to G having direct summands of type A_{n-1} where p|n. We shall therefore concentrate on these semi-simple summands and on the related Lie algebras \mathfrak{sl}_n , \mathfrak{pgl}_n and \mathfrak{psl}_n .

Our main results for $Z(U(\mathfrak{sl}_n))$ are as follows:

Theorem B. Suppose p|n. Then there exists an order p winding automorphism ϕ of $U(\mathfrak{gl}_n)$ such that:

$$Z_p(U(\mathfrak{gl}_n)) \bigotimes_{Z_p(U(\mathfrak{gl}_n))^{GL_n}} (U(\mathfrak{gl}_n)^{GL_n})^{\phi} \cong Z(U(\mathfrak{sl}_n))[e_{11}^p - e_{11}].$$

Download English Version:

https://daneshyari.com/en/article/8896109

Download Persian Version:

https://daneshyari.com/article/8896109

Daneshyari.com