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1. Introduction

Let g = Lie(G) be the Lie algebra of a reductive connected algebraic group over an
algebraically closed field F' with char FF = p > 0. We say that G satisfies the (Jantzen’s)
standard assumptions if:

(1) The derived group DG of G is simply connected,
(2) p is good for G,
(3) There exists a G-invariant non-degenerate bilinear form on g.

The structure of Z(U(g)) where ¢ = Lie(G) and G is a reductive algebraic group satis-
fying the standard assumptions is known as “Veldkamp’s theorem”. It is a consequence of
many contributions due to Veldkamp [45], Kac—Weisfeiler [31], DeConcini-Kac—Procesi
[14], Brown—Gordon [10] and Mirkovic-Rumynin [36].

Let Z, := Z,(U(g)) denote the p-center of U(g). This is a polynomial ring. Let U(g)¢
be the so called Harish—Chandra center, where G acts by the adjoint action on U(g)
(extending the one on g). It is a consequence of Demazure theorem (and its extension
due to Slodoway) that U(g)¢ is a polynomial ring in rank(g)-variables. The extended
version of Veldkamp’s theorem can be stated as follows:

Theorem A.

(1) The fiber product theorem:

Z, QU (9)° = Z(U(s)).
7G

In particular Z(U(g)) is generated by the generators of the p-center and the Harish—
Chandra center,

(2) Z(U(s)) is a free Z,-module of rank p***®) . In particular Z(U(a)) is a complete
intersection,

(3) similar statements hold for S(g)3 with relation to S(g)¢ and S,(q).

Our goal here is to consider the remaining reductive cases when p is good for G.
This amounts to G having direct summands of type A, _; where p|n. We shall therefore
concentrate on these semi-simple summands and on the related Lie algebras 8l,,, pgl,, and
p3l,,.

Our main results for Z(U (8l,,)) are as follows:

Theorem B. Suppose p|n. Then there exists an order p winding automorphism ¢ of U(ql,,)
such that:

Z,U@) @ (U,))? = Z(U @)l — enl.
Zy(U @, )CEn
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