

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Simplicities of VOAs associated to Jordan algebras of type B and character formulas for simple quotients

Hongbo Zhao

School of Mathematics (Zhuhai), Sun Yat Sen University, Zhuhai, China

ARTICLE INFO

Article history: Received 12 February 2017 Available online 6 March 2018 Communicated by Nicolás Andruskiewitsch

Keywords: Vertex operator algebras Jordan algebras Dual pair type constructions Character formula

ABSTRACT

In this paper we study the VOA $V_{\mathcal{I},r}$ constructed by Ashihara and Miyamoto in [2], which satisfies $(V_{\mathcal{I},r})_0=\mathbb{C}1, (V_{\mathcal{I},r})_1=\{0\}$, and the Griess algebra $(V_{\mathcal{I},r})_2$ is isomorphic to the type B simple Jordan algebra \mathcal{I} . We construct simple quotients $\bar{V}_{\mathcal{I},r}$ for $r\in\mathbb{Z}_{\neq 0}$ using dual-pair type constructions, and we reprove that $V_{\mathcal{I},r}$ is simple if $r\notin\mathbb{Z}$. We also compute the character formula of the simple quotients $\bar{V}_{\mathcal{I},r}$ for $r=-2n,n\in\mathbb{Z}_{>0}$.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction to the main results

Let V be a $\mathbb{Z}_{\geq 0}$ graded vertex operator algebra (VOA), with $V_0 = \mathbb{C}1, V_1 = \{0\}$. Then V_2 has a commutative (but not necessarily associative) algebra structure with the operation $a \circ b = a(1)b$. This algebra V_2 is called the Griess algebra of V. In [18] and [19], Lam constructed VOAs whose Griess algebras are simple Jordan algebras of type A, B, and C. For some low rank type D simple Jordan algebras the construction was given by Ashihara in [3]; In [2] Ashihara and Miyamoto constructed a family of VOAs

E-mail address: hzhaoab@connect.ust.hk.

 $V_{\mathcal{J},r}$ parametrized by $r \in \mathbb{C}$, whose Griess algebras are isomorphic to type B Jordan algebras \mathcal{J} . The VOA $V_{\mathcal{J},r}$ was further studied by Niibori and Sagaki in [23].

One of the main results in [23] claims that if \mathcal{J} is not the Jordan algebra of 1×1 matrix, then $V_{\mathcal{J},r}$ is simple if and only if $r \notin \mathbb{Z}$. This suggests that $r \in \mathbb{Z}$ are special and may deserve further study. We show that the simple quotients $\bar{V}_{\mathcal{J},r}$, $r \in \mathbb{Z}_{\neq 0}$ can be constructed by a dual-pair type construction. We also apply the construction to compute the character $\mathrm{Tr}|_{\bar{V}_{\mathcal{J},r}}q^{L(0)}$ for $r=-2n, n\geq 1$. The Clebsch–Gordan coefficients appear naturally in the character formula.

We give more details about this paper. All vector spaces and Lie groups are assumed to be over \mathbb{C} . Let $(\mathfrak{h}, (\cdot, \cdot))$ be a finite dimensional vector space with a non-degenerate symmetric bilinear form (\cdot, \cdot) , $\dim(\mathfrak{h}) = d$. Then $\mathfrak{h} \otimes \mathfrak{h}$ has an associative algebra structure:

$$(a \otimes b)(u \otimes v) = (b, u)a \otimes v,$$

which induces a Jordan algebra structure on $\mathfrak{h} \otimes \mathfrak{h}$:

$$x \circ y = \frac{1}{2}(xy + yx), \ \forall x, y \in \mathfrak{h} \otimes \mathfrak{h}.$$

Let \mathcal{J} be the Jordan subalgebra of $\mathfrak{h} \otimes \mathfrak{h}$ consists of symmetric tensors:

$$\mathcal{J} \stackrel{def.}{=} \operatorname{span}\{L_{a,b} | a, b \in \mathfrak{h}\}, L_{a,b} \stackrel{def.}{=} a \otimes b + b \otimes a.$$

Then \mathcal{J} is the type B simple Jordan algebra of rank d [11].

In this paper we assume that $d \geq 2$ except when we discuss the character formula in Section 6. Let $V_{\mathcal{J},r}$ be the VOA constructed in [2] and $\bar{V}_{\mathcal{J},r}$ be the corresponding simple quotient. In [23] it is shown that $V_{\mathcal{J},r} = \bar{V}_{\mathcal{J},r}$ if and only if $r \notin \mathbb{Z}$. Our results further show that we can construct $\bar{V}_{\mathcal{J},r}, r \in \mathbb{Z}_{\neq 0}$ explicitly. We divide our constructions into three cases:

Case 1, $r = m, m \ge 1$: Let $(V_m, (\cdot, \cdot))$ be a m-dimensional vector space with a non-degenerate symmetric bilinear form. The tensor product space $\mathfrak{h} \otimes V_m$ is a dm-dimensional vector space with the non-degenerate symmetric bilinear form:

$$((a\otimes u),(b\otimes v))=(a,b)(u,v).$$

Let $\mathcal{H}(\mathfrak{h} \otimes V_m)$ be the Heisenberg VOA associated to the vector space $\mathfrak{h} \otimes V_m$ [8]. The group O(m) acts on the component V_m , therefore it acts as automorphism on $\mathcal{H}(\mathfrak{h} \otimes V_m)$. We construct $\bar{V}_{\mathcal{J},m}$ as:

$$\bar{V}_{\mathcal{J},m} \stackrel{def.}{=} \mathcal{H}(\mathfrak{h} \otimes V_m)^{O(m)}.$$

Case 2, $r = -2n, n \ge 1$: In this case, we need to consider a super vertex operator algebra (SVOA) associated to a symplectic space, which is called the 'symplectic

Download English Version:

https://daneshyari.com/en/article/8896119

Download Persian Version:

https://daneshyari.com/article/8896119

Daneshyari.com