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1. Introduction

Let W be finite complex reflection group, for instance a finite Coxeter group. Let B
denote the braid group associated to W in the sense of Broué-Malle-Rouquier (see [8]),
which in the case of a finite Coxeter group coincides with the Artin group attached to
it. We denote 7w : B — W the natural projection.

The object of this paper is to introduce and analyze a family of algebras denoted
C(W, L), where L is a finite join semi-lattice which lies inside the poset made of the
full reflection subgroups of W, ordered by inclusion. Here a reflection subgroup of W
is called full if, for any reflection in this subgroup, all the (pseudo-)reflections with the
same reflecting hyperplane belong to it. The semi-lattice £ is additionally supposed to
be stable under the natural action of W on the lattice of reflection subgroups, and to
contain all the cyclic (full) reflection subgroups, and the trivial subgroup as well. Such
a semi-lattice will be called an admissible semi-lattice.

Let A denote the hyperplane arrangement attached to W, namely the collection of
its reflecting hyperplanes. Let k be a commutative ring with 1, containing elements ag ;
where H € A, 0 < i < my where mpg is the order of the cyclic subgroup of W fixing H,
with the convention that agm; = ay(m), for every H € A,w € W and ag is invertible
inside k. Let R denote the generic ring of Laurent polynomials with integer coefficients
Zlam,, aﬁlo], with the same conventions. Our conditions on k mean that it is a R-algebra.
We now define k-algebras Cx (W, £), with the convention that C(W, L) = Cr(W, L).

These algebras are defined as follows. First consider the algebra kL defined as the
free k-module with basis elements ey, A € £, and where the multiplication is defined
by exe, = eavy. This is sometimes called the Mébius algebra of £. Elements of £ can
be identified with the collection of reflecting hyperplanes attached to them, and we let
en = eqqy denote the idempotent attached to the subgroup fixing H € A. We shall use
this identification whenever it is convenient to us.

By definition W acts by automorphisms on k£, hence so does B, and one can form
the semidirect product kB x kL. The algebras Cyx (W, £) are defined as the quotient of
kB x kL by the two-sided ideal J generated by the elements c™# —1—Q;(0)ey where o
runs among the braided reflections of B, s = m(¢) is the corresponding pseudo-reflection,
H =Ker(s—1), and Qs(X) = Zg)_l ag xX* — 1 € k[X] (see section 2.3.2 for more
details).
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