Morita equivalence and quotient rings

Morton E. Harris
Department of Mathematics, Statistics, and Computer Science (M/C 249), University of Illinois at Chicago, Chicago, IL 60607-7045, USA

A R T I C L E I N F O

Article history:

Received 22 May 2017
Available online 31 January 2018
Communicated by Markus
Linckelmann

MSC:

16D90

Keywords:
Morita equivalences
Quotient algebras

A B S T R A C T

Let A and B be rings and let M be an $A-B$-bimodule that is finitely generated and projective in $A-\bmod$ and in mod- B. Also let I be an ideal of A and let J be an ideal of B such that $I M=M J$. Our main result is a partial converse of a known result:

Proposition. Suppose that $I \leq J(A), J \leq J(B)$ so that $M /(I M)$ is an $\bar{A}=A / I-\bar{B}=B / J$-bimodule that is finitely generated and projective in \bar{A}-mod and in $\bmod -\bar{B}$ and that induces a Morita Equivalence between \bar{A}-mod and \bar{B}-mod. Then M induces a Morita Equivalence between A-mod and B-mod.

This result should be particularly useful in the context that A and B are \mathcal{O}-algebras where \mathcal{O} is a commutative local ring, $I=J(\mathcal{O}) A$ and $J=I(\mathcal{O}) B$. In which case, \bar{A} and \bar{B} are finite dimensional algebras over the field $k=\mathcal{O} / J(\mathcal{O})$.
© 2018 Elsevier Inc. All rights reserved.

1. Introduction and main results

Our notation and terminology are standard and tend to follow [1]. All rings have identities and all modules over a ring are unitary.

[^0]Let R be a ring. Then R-mod (resp. mod- R) will denote the category of left (resp. right) R-modules.

In this section, we state and prove our main result (Proposition 1.1). In Section 2, we prove several results that are required in our proof of Proposition 1.1.

Let A and B be rings and let M be an $A-B$-bimodule such that M is finitely generated and projective in A-mod and in mod- B. Also let I be an ideal of A and let J be an ideal of B such that $I M=M J$. Then, it is well-known that, if M induces a Morita equivalence between A-mod and B-mod, then $M /(I M)$ induces Morita equivalence between the rings A / I and B / J (cf. [1, Proposition 21.11]).

Our main result is a partial converse to this result:

Proposition 1.1. Assume the hypotheses above and that $I \leq J(A)$ and $J \leq I(B)$ and suppose also that $M /(I M)$ induces a Morita equivalence between A / I and B / J. Then M induces a Morita equivalence between A and B.

Remark 1.2. Suppose that \mathcal{O} is a commutative ring, that A and B are finitely \mathcal{O}-algebras, and that M is an $A-B$-bimodule such that $\alpha m=m \alpha$ for all $m \in M$, and $\alpha \in \mathcal{O}$. Let I be an ideal of \mathcal{O} contained in $J(\mathcal{O})$ so that $I M=M I, I A=A I$ is an ideal in A and $I B=B I$ is an ideal in B. Assume also that M is finitely generated over \mathcal{O} and hence ${ }_{A} M$ is finitely generated in A-mod and M_{B} is finitely generated in mod- B. Assume also that M is a projective in A-mod and in mod- B. Then, of course, Proposition 1.1 applies.

We proved Proposition 1.1 in this context in a previous version. A very astute referee suggested that similar arguments might avail to prove a generalization (Proposition 1.1) of our \mathcal{O}-algebra investigations.

Remark 1.3. In the case that A and B are \mathcal{O}-algebras with \mathcal{O} a commutative local ring, then $k=\mathcal{O} / J(\mathcal{O})$ is a field. Set $I=J(\mathcal{O})$. Then Proposition 1.1 reduces, under the hypotheses of Proposition 1.1, a proof of the Morita Equivalence of A and B to the " \bar{A} and \bar{B} are finite dimensional algebras over the field k " case. This particular issue arose in [2, Proposition 4.14.5].

A proof of proposition. Assume the hypotheses of Proposition 1.1. Here $M /(I M)=$ $M /(M J)$ is a projective generator in $A / I-\bmod$ and in $\bmod -B / J$ (cf. [1, Theorem 22.1]).

Thus Lemma 2.1 implies that M is a finitely generated projective generator in mod- B. Thus $\operatorname{End}_{A}(M)=\mathcal{H o m}_{A}(M, M)$ is a finitely generated module in mod- B by Lemma 2.2.

Let $\pi_{B}: B \rightarrow B / J$ denote the canonic ring epimorphism and let $\Gamma: \mathcal{H o m}_{A}(M, M)=$ $\operatorname{End}_{A}(M) \rightarrow \mathcal{H o m}_{A}(M /(I M), M(I M))$ denote the ring homomorphism such that $\Gamma(f)(m+I M)=f(m)+I M$ for all $m \in M$ and all $f \in \mathcal{H o m}_{A}(M, M)$. Let $\rho_{A}: B^{o p} \rightarrow \operatorname{End}_{A}(M)$ denote the ring homomorphism such that $\rho_{B}(b)(m)=m b$ for all $m \in M$ and $b \in B$ and similarly define $\rho_{B / J}:(B / I)^{o p} \rightarrow \operatorname{End}_{A / I}(M /(I M))$. By [1, Theorem 17.8(i)] both ρ_{B} and $\rho_{B / I}$ are injective.

https://daneshyari.com/en/article/8896192

Download Persian Version:
https://daneshyari.com/article/8896192

Daneshyari.com

[^0]: E-mail address: meharris@uic.edu.
 https://doi.org/10.1016/j.jalgebra.2017.11.054
 0021-8693/© 2018 Elsevier Inc. All rights reserved.

