

Journal of Algebra 502 (2018) 98-119

Generalized μ -ordinary Hasse invariants

Jean-Stefan Koskivirta $^{\ast},$ Torsten Wedhorn

A R T I C L E I N F O

Article history: Received 28 July 2017 Available online 31 January 2018 Communicated by Steven Dale Cutkosky

Keywords: Shimura varieties Reductive groups Algebraic groups Stacks

АВЅТ КАСТ

We give a short proof for the existence of μ -ordinary Hasse invariants for the good reduction special fiber of Shimura varieties of Hodge-type using the stack of *G*-zips introduced by Moonen–Wedhorn and Pink–Wedhorn–Ziegler. We give an explicit formula for the power of the Hodge bundle that admits a Hasse invariant. When *G* is a Weil restriction of *G*₁, we relate the Ekedahl–Oort strata of *G* and those of *G*₁.

© 2018 Elsevier Inc. All rights reserved.

Introduction

This article predates the recent preprints [6] and [7] of the first author joint with W. Goldring on the existence of Hasse invariants. See below for a comparative description of these papers.

Shimura varieties and G-zips

Let (\mathbf{G}, X) be a Shimura datum of Hodge-type and let \mathcal{S}_K be the Kisin–Vasiu integral model of the associated Shimura variety $Sh_K(\mathbf{G}, X)$ at a level K, hyperspecial at p. Denote by S_K the special fiber of \mathcal{S}_K and write G for the special fiber of a reductive \mathbb{Z}_p -model of $\mathbf{G}_{\mathbb{Q}_p}$.

* Corresponding author.

E-mail address: j.koskivirta@imperial.ac.uk (J.-S. Koskivirta).

Recall that Zhang [22] gives a smooth morphism $\zeta : S_K \to G\text{-}\operatorname{Zip}^{\mu}$, where $G\text{-}\operatorname{Zip}^{\mu}$ is the stack of $G\text{-}\operatorname{zips}$, defined by Pink–Wedhorn–Ziegler in [18] (see also the precursor paper [16]) and μ pertains to the cocharacter attached to the Shimura datum. The fibers of ζ are termed Ekedahl–Oort strata of S_K . In this paper we study the open zip stratum $U_{\mu} \subset G\text{-}\operatorname{Zip}^{\mu}$ and its corresponding generic Ekedahl–Oort stratum $S_{K,\mu} \subset S_K$. It coincides with the μ -ordinary Newton stratum [21].

Attached to the pair (G, μ) , there is a zip datum $\mathcal{Z} := (G, P, L, Q, M, \varphi)$ (§1.4), where L is the centralizer of μ in G and P corresponds to the stabilizer of the Hodge filtration. One attaches to each $\lambda \in X^*(L)$ a line bundle $\mathscr{V}(\lambda)$ on the stack G-Zip^{μ}. Its pull-back $\zeta^*(\mathscr{V}(\lambda))$ coincides with the automorphic line bundle $\mathscr{V}_K(\lambda)$ naturally attached to λ . For example, there exists $\lambda_{\omega} \in X^*(L)$ such that $\mathscr{V}_K(\lambda_{\omega})$ is the Hodge line bundle ω on S_K .

Hasse invariants

In this paper, we say that a section $h \in H^0(G\text{-}Zip^{\mu}, \mathscr{V}(\lambda))$ is a Hasse invariant if its non-vanishing locus is exactly the μ -ordinary stratum U_{μ} . There is an explicit integer N_{μ} (Definition 3.2.4) satisfying the following:

Theorem 1 (*Theorem 5.1.4*). If $\lambda \in X^*(L)$ is \mathbb{Z} -ample, there exists a Hasse invariant $h \in H^0(G\text{-}Zip^{\mu}, \mathscr{V}(N_{\mu}\lambda)).$

For the definition of \mathcal{Z} -ample, see Definition 5.1.1. The character λ_{ω} defining the Hodge line bundle is \mathcal{Z} -ample. In [6, Th. 3.2.3], a similar result for all strata is proved using a group-theoretical counterpart of a flag space of Ekedahl–Van der Geer. The methods used here to prove Theorem 1 differ in many aspects from [6]; they are based on the study of Ekedahl–Oort strata in the case of a Weil restriction, which we explain below.

Furthermore, we want to point out that we do not assume in Theorem 1 that λ satisfies the condition "orbitally *p*-close" of [6, Th. 3.2.3]. Hence Theorem 1 gives a stronger result than [6, Th. 3.2.3] for the open zip stratum. Another improvement is the fact that we determine explicitly the integer N_{μ} in Theorem 1, whereas [6, Th. 3.2.3] gives an undetermined integer. This is the smallest integer satisfying the existence of a Hasse invariant.

In particular, we obtain the following corollary (Corollary 5.6.1):

Corollary 1. There exists a section $h_K \in H^0(S_K, \omega^{N_{\mu}})$ whose non-vanishing locus is the μ -ordinary locus of S_K .

Prior to the present article, Hasse invariants were constructed by a number of authors: E. Goren established the existence of partial Hasse invariants for the case of Hilbert–Blumenthal Shimura varieties [9]. In the split unitary case of signature (n-1, 1), Ito constructed Hasse invariants for all Ekedahl–Oort strata [11]. Finally, Goldring and Nicole constructed a μ -ordinary Hasse invariant for unitary Shimura varieties [8].

Download English Version:

https://daneshyari.com/en/article/8896196

Download Persian Version:

https://daneshyari.com/article/8896196

Daneshyari.com