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TRANSCENDENTAL DEGREE IN POWER SERIES RINGS

LE THI NGOC GIAU AND PHAN THANH TOAN

Abstract. Let D be an integral domain with quotient field K. Let D[[x]]
and K[[x]] be the power series ring over D and K, respectively. In this paper,
we show that either (1) K[[x]] and D[[x]] have the same quotient field or (2)

the quotient field of K[[x]] has uncountable transcendence degree over that
of D[[x]], i.e., tr.d.(K[[x]]/D[[x]]) ≥ ℵ1. In (2), the bound ℵ1 is the greatest
lower bound that one can obtain since under the continuum hypothesis the
cardinality of the quotient field of K[[x]] is exactly ℵ1 provided that K is
countable. We also show that the above result holds when K is replaced by
any quotient overring DS of D.

1. Introduction

Let D be an integral domain and let D[x] (respectively, D[[x]]) be the polynomial
ring (respectively, the power series ring) overD. LetK be the quotient field ofD. It
is easy to see that the polynomial rings D[x] and K[x] have the same quotient field.
For the power series rings D[[x]] and K[[x]], Gilmer [4] showed that the following
are equivalent.

(1) D[[x]] and K[[x]] have the same quotient field.
(2) K[[x]] = (D[[x]])D∗ , where D∗ = D \ {0}.
(3) If {ai}∞i=1 is a sequence of nonzero elements of D, then ∩∞

i=1aiD �= (0).

According to this result, the quotient fields of D[[x]] and K[[x]] are different in
general. In fact, as mentioned in [3], it is rare that D[[x]] and K[[x]] have the
same quotient field. Except for the trivial case when D is a field, the only example
showing that D[[x]] and K[[x]] have the same quotient field is given by Gilmer in
[4].

For two integral domains D1 ⊆ D2, denote by tr.d.(D2/D1) the transcendence
degree of the quotient field of D2 over that of D1. Hence, for a cardinal number α,
tr.d.(D2/D1) ≥ α if there exists a subset of the quotient field of D2 with cardinality
at least α that is algebraically independent over the quotient field of D1. Suppose
that the quotient fields of K[[x]] and D[[x]] are different. Then a natural question is
“how large the difference is in this case?” Sheldon showed in [7] that if D contains
a nonzero element a such that ∩∞

i=1a
iD = (0), then tr.d.(D[[x/a]]/D[[x]]) ≥ ℵ0 and

hence tr.d.(K[[x]]/D[[x]]) ≥ ℵ0 since D[[x/a]] ⊆ D[1/a][[x]] ⊆ K[[x]]. In [1], Arnold
and Boyd made a great improvement of this result by showing that if K[[x]] and
D[[x]] have different quotient fields, then tr.d.(K[[x]]/D[[x]]) ≥ ℵ0.
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