Integral closure and bounds for quotients of multiplicities of monomial ideals

Carles Bivià-Ausina ${ }^{1}$
Institut Universitari de Matemàtica Pura i Aplicada, Universitat Politècnica de València, Camí de Vera, s/n, 46022 València, Spain

A R T I C L E I N F O

Article history

Received 15 June 2017
Available online xxxx
Communicated by Kazuhiko Kurano

MSC:

primary 13 H 15
secondary $13 \mathrm{~B} 22,32 \mathrm{~S} 05$

Keywords:

Integral closure of ideals
Mixed multiplicities of ideals
Monomial ideals
Newton polyhedra

Abstract

Given a pair of monomial ideals I and J of finite colength of the ring of analytic function germs $\left(\mathbb{C}^{n}, 0\right) \rightarrow \mathbb{C}$, we prove that some power of I admits a reduction formed by homogeneous polynomials with respect to the Newton filtration induced by J if and only if the quotient of multiplicities $e(I) / e(J)$ attains a suitable upper bound expressed in terms of the Newton polyhedra of I and J. We also explore other connections between mixed multiplicities, Newton filtrations and the integral closure of ideals.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Let us denote by \mathcal{O}_{n} the ring of complex analytic function germs $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow \mathbb{C}$. Let $g:\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{n}, 0\right)$ be a complex analytic map. We say that g is finite when $g^{-1}(0)=\{0\}$; in this case, we refer to the number $e(g)=\operatorname{dim}_{\mathbb{C}} \mathcal{O}_{n} / I(g)$ as the multiplicity of g, where $I(g)$ denotes the ideal of \mathcal{O}_{n} generated by the components of g (see [1, §5], $[8, \S 2]$ or $[9, \S 2]$ for several characterizations of this number). More generally, if I is any

[^0]ideal of \mathcal{O}_{n} of finite colength, then the multiplicity of I, in the sense of Hilbert-Samuel, is denoted by $e(I)$ (see $[10,12,23]$). We recall that, when I admits a generating system formed by n elements, then $e(I)=\operatorname{dim}_{\mathbb{C}} \mathcal{O}_{n} / I$. It is well-known that, if we fix a vector $w=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{Z}_{\geq 1}^{n}$ and g is semi-weighted homogeneous with respect to w, then $e(g)$ can be expressed as
$$
e(g)=\frac{d_{1} \cdots d_{n}}{w_{1} \cdots w_{n}}
$$
where d_{i} is the degree of g_{i} with respect to w, for all $i=1, \ldots, n$ (see for instance $[1, \S 12.3]$ or $[8, \S 10.3]$). This result was generalized in [7] by replacing the weighted homogeneous filtration induced by w by the Newton filtration induced by a given Newton polyhedron of $\mathbb{R}_{\geq 0}^{n}$ (see Theorem 4.2). That is, let $\Gamma_{+} \subseteq \mathbb{R}_{\geq 0}^{n}$ be a Newton polyhedron such that $\Gamma_{+} \neq \mathbb{R}_{\geq 0}^{n}$ and Γ_{+}intersects each coordinate axis. Let Γ be the union of all compact faces of $\bar{\Gamma}_{+}$and let ν_{Γ} be the Newton filtration induced by Γ_{+}(see Section 4 for details). If $g:\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{n}, 0\right)$ is any finite analytic map, then
\[

$$
\begin{equation*}
e(g) \geq \frac{d_{1} \cdots d_{n}}{M_{\Gamma}^{n}} n!\mathrm{V}_{n}\left(\mathbb{R}_{\geq 0}^{n} \backslash \Gamma_{+}\right) \tag{1}
\end{equation*}
$$

\]

where $d_{i}=\nu_{\Gamma}\left(g_{i}\right)$, for all $i=1, \ldots, n, \mathrm{~V}_{n}$ denotes the n-dimensional volume and M_{Γ} is the value of ν_{Γ} over the monomials whose exponent belongs to Γ. The maps $g:\left(\mathbb{C}^{n}, 0\right) \rightarrow$ $\left(\mathbb{C}^{n}, 0\right)$ for which equality holds in (1) are called non-degenerate on Γ_{+}. This class of maps is characterized in [7, Theorem 3.3].

If K is a monomial ideal of \mathcal{O}_{n} of finite colength, then we recall that the multiplicity of K is expressed as $e(K)=n!\mathrm{V}_{n}\left(\mathbb{R}_{\geq 0}^{n} \backslash \Gamma_{+}(K)\right)$, where $\Gamma_{+}(K)$ denotes the Newton polyhedron of K (see for instance $[21,22]$). Therefore, relation (1) also shows a lower bound for the quotient $e(g) / e(J)$, where J is the integrally closed monomial ideal such that $\Gamma_{+}=\Gamma_{+}(J)$. We also refer to non-degenerate maps on Γ_{+}as J-non-degenerate maps. We show that equality holds in (1) if and only if there exists some integers $a_{1}, \ldots, a_{n}, d \in \mathbb{Z}_{\geq 1}$ such that $\overline{\left\langle g_{1}^{a_{1}}, \ldots, g_{n}^{a_{n}}\right\rangle}=\overline{J^{d}}$, where the bar denotes integral closure.

Moreover, if I is a monomial ideal of \mathcal{O}_{n} of finite colength, then we use the respective Newton polyhedra of I and J to define an increasing sequence of positive rational numbers $a_{1, J}(I), \ldots, a_{n, J}(I)$ that leads to an upper bound for the quotient $e(I) / e(J)$, that is,

$$
\begin{equation*}
\frac{e(I)}{e(J)} \leq \frac{a_{1, J}(I) \cdots a_{n, J}(I)}{M_{J}^{n}} \tag{2}
\end{equation*}
$$

where M_{J} is a positive integer defined in terms of the Newton filtration of J (see Section 4). We prove that equality holds in (2) if and only if there exists some $s \geq 1$ such that $\overline{I^{s}}=\overline{\left\langle g_{1}, \ldots, g_{n}\right\rangle}$, for some map $\left(g_{1}, \ldots, g_{n}\right):\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{n}, 0\right)$ which is J-nondegenerate. This result appears in Theorem 5.5. The proof of this result is preceded

https://daneshyari.com/en/article/8896261

Download Persian Version:

https://daneshyari.com/article/8896261

Daneshyari.com

[^0]: E-mail address: carbivia@mat.upv.es.
 ${ }^{1}$ The author was partially supported by DGICYT Grant MTM2015-64013-P.

