

Journal of Algebra 501 (2018) 545-570

The rotating normal form of braids is regular

Jean Fromentin

ARTICLE INFO

Article history: Received 1 July 2016 Available online 3 February 2018 Communicated by Derek Holt

MSC: 20F36 20M35 20F10

Keywords: Dual braid monoid Rotating normal form Regular language Automata

ABSTRACT

Defined on Birman–Ko–Lee monoids, the rotating normal form has strong connections with the Dehornoy's braid ordering. It can be seen as a process for selecting between all the representative words of a Birman–Ko–Lee braid a particular one, called *rotating* word. In this paper we construct, for all $n \ge 2$, a finite-state automaton which recognizes rotating words on n strands, proving that the rotating normal form is regular. As a consequence we obtain the regularity of a σ -definite normal form defined on the whole braid group.

@ 2018 Elsevier Inc. All rights reserved.

1. Introduction

Originally, the group B_n of *n*-strand braids was defined as the group of isotopy classes of *n*-strand geometric braids. An algebraic presentation of B_n was given by E. Artin in [1]:

$$\left\langle \sigma_1, \dots, \sigma_{n-1} \middle| \begin{array}{cc} \sigma_i \sigma_j &= \sigma_j \sigma_i & \text{ for } |i-j| \ge 2\\ \sigma_i \sigma_j \sigma_i &= \sigma_j \sigma_i \sigma_j & \text{ for } |i-j| = 1 \end{array} \right\rangle.$$
(1)

An *n*-strand braid is an equivalence class consisting of (infinitely many) words in the letters $\sigma_i^{\pm 1}$. The standard correspondence between elements of the presented group B_n

 $\label{eq:https://doi.org/10.1016/j.jalgebra.2018.01.001 \\ 0021-8693 @ 2018 Elsevier Inc. All rights reserved.$

E-mail address: jean.fromentin@math.cnrs.fr.

Fig. 1. Interpretation of a word in the letters $\sigma_i^{\pm 1}$ as a geometric braid diagram.

Fig. 2. In the geometric braid $a_{1,4}$, the strands 1 and 4 cross under the strands 2 and 3.

and geometric braids consists in using σ_i as a code for the geometric braid where only the *i*th and the (i + 1)st strands cross, with the strand originally at position (i + 1) in front of the other (see Fig. 1).

In 1998, J.S. Birman, K.H. Ko, and S.J. Lee [3] introduced and investigated for each n a submonoid B_n^{+*} of B_n , which is known as the *Birman–Ko–Lee* monoid. The name *dual braid monoid* was subsequently proposed because several numerical parameters obtain symmetric values when they are evaluated on the positive braid monoid B_n^+ and on B_n^{+*} , a correspondence that was extended to the more general context of Artin–Tits groups by D. Bessis [2] in 2003. The dual braid monoid B_n^{+*} is the submonoid of B_n generated by the braids $a_{i,j}$ with $1 \leq i < j \leq n$, where $a_{i,j}$ is defined by $a_{i,j} = \sigma_i \cdots \sigma_{j-1} \sigma_j \sigma_{j-1}^{-1} \cdots \sigma_i^{-1}$. In geometrical terms, the braid $a_{i,j}$ corresponds to a crossing of the *i*th and *j*th strands, both passing behind the (possible) intermediate strands (see Fig. 2).

Remark. In [3], the braid $a_{i,j}$ is defined to be $\sigma_{j-1} \cdots \sigma_{i+1} \sigma_i \sigma_{i+1}^{-1} \cdots \sigma_{j-1}^{-1}$, corresponding to a crossing of the *i*th and *j*th strands, both passing in **front** of the (possible) intermediate strands. The two definitions lead to isomorphic monoids. Our choice is this of [13] and has connections with Dehornoy's braid ordering: B_{n-1}^{+*} is an initial segment of B_n^{+*} .

By definition, σ_i equals $a_{i,i+1}$ and, therefore, the positive braid monoid B_n^+ is included in the monoid B_n^{+*} , a proper inclusion for $n \ge 3$ since the braid $a_{1,3}$ does not belong to the monoid B_3^+ .

For $n \ge 2$, we denote by A_n the set $\{a_{p,q} \mid 1 \le p < q \le n\}$. If p and q are two integers of \mathbb{N} satisfying $p \le q$, we denote by [p,q] the interval $\{p, ..., q\}$ of \mathbb{N} . The interval [p,q] is said to be *nested* in the interval [r,s] if the relation r holds. The following $presentation of the monoid <math>B_n^{+*}$ is given in [3].

Proposition 1.1. The monoid B_n^{+*} is presented by generators A_n and relations:

$$a_{p,q}a_{r,s} = a_{r,s}a_{p,q}$$
 for $[p,q]$ and $[r,s]$ disjoint or nested, (2)

Download English Version:

https://daneshyari.com/en/article/8896285

Download Persian Version:

https://daneshyari.com/article/8896285

Daneshyari.com