The rotating normal form of braids is regular

Jean Fromentin

A R T I C L E I N F O

Article history:

Received 1 July 2016
Available online 3 February 2018
Communicated by Derek Holt

MSC:

20F36
20M35
20F10

Keywords:

Dual braid monoid
Rotating normal form
Regular language
Automata

Abstract

Defined on Birman-Ko-Lee monoids, the rotating normal form has strong connections with the Dehornoy's braid ordering. It can be seen as a process for selecting between all the representative words of a Birman-Ko-Lee braid a particular one, called rotating word. In this paper we construct, for all $n \geqslant 2$, a finite-state automaton which recognizes rotating words on n strands, proving that the rotating normal form is regular. As a consequence we obtain the regularity of a σ-definite normal form defined on the whole braid group.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Originally, the group B_{n} of n-strand braids was defined as the group of isotopy classes of n-strand geometric braids. An algebraic presentation of B_{n} was given by E. Artin in [1]:

$$
\left\langle\sigma_{1}, \ldots, \sigma_{n-1} \left\lvert\, \begin{array}{cc}
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i} & \text { for }|i-j| \geqslant 2 \tag{1}\\
\sigma_{i} \sigma_{j} \sigma_{i}=\sigma_{j} \sigma_{i} \sigma_{j} & \text { for }|i-j|=1
\end{array}\right.\right\rangle .
$$

An n-strand braid is an equivalence class consisting of (infinitely many) words in the letters $\sigma_{i}^{ \pm 1}$. The standard correspondence between elements of the presented group B_{n}

[^0]

Fig. 1. Interpretation of a word in the letters $\sigma_{i}^{ \pm 1}$ as a geometric braid diagram.

Fig. 2. In the geometric braid $a_{1,4}$, the strands 1 and 4 cross under the strands 2 and 3 .
and geometric braids consists in using σ_{i} as a code for the geometric braid where only the i th and the $(i+1)$ st strands cross, with the strand originally at position $(i+1)$ in front of the other (see Fig. 1).

In 1998, J.S. Birman, K.H. Ko, and S.J. Lee [3] introduced and investigated for each n a submonoid B_{n}^{+*} of B_{n}, which is known as the Birman-Ko-Lee monoid. The name dual braid monoid was subsequently proposed because several numerical parameters obtain symmetric values when they are evaluated on the positive braid monoid B_{n}^{+}and on B_{n}^{+*}, a correspondence that was extended to the more general context of Artin-Tits groups by D. Bessis [2] in 2003. The dual braid monoid B_{n}^{+*} is the submonoid of B_{n} generated by the braids $a_{i, j}$ with $1 \leqslant i<j \leqslant n$, where $a_{i, j}$ is defined by $a_{i, j}=\sigma_{i} \cdots \sigma_{j-1} \sigma_{j} \sigma_{j-1}^{-1} \cdots \sigma_{i}^{-1}$. In geometrical terms, the braid $a_{i, j}$ corresponds to a crossing of the i th and j th strands, both passing behind the (possible) intermediate strands (see Fig. 2).

Remark. In [3], the braid $a_{i, j}$ is defined to be $\sigma_{j-1} \cdots \sigma_{i+1} \sigma_{i} \sigma_{i+1}^{-1} \cdots \sigma_{j-1}^{-1}$, corresponding to a crossing of the i th and j th strands, both passing in front of the (possible) intermediate strands. The two definitions lead to isomorphic monoids. Our choice is this of [13] and has connections with Dehornoy's braid ordering: B_{n-1}^{+*} is an initial segment of B_{n}^{+*}.

By definition, σ_{i} equals $a_{i, i+1}$ and, therefore, the positive braid monoid B_{n}^{+}is included in the monoid B_{n}^{+*}, a proper inclusion for $n \geqslant 3$ since the braid $a_{1,3}$ does not belong to the monoid B_{3}^{+}.

For $n \geqslant 2$, we denote by A_{n} the set $\left\{a_{p, q} \mid 1 \leqslant p<q \leqslant n\right\}$. If p and q are two integers of \mathbb{N} satisfying $p \leqslant q$, we denote by $[p, q]$ the interval $\{p, \ldots, q\}$ of \mathbb{N}. The interval $[p, q]$ is said to be nested in the interval $[r, s]$ if the relation $r<p<q<s$ holds. The following presentation of the monoid B_{n}^{+*} is given in [3].

Proposition 1.1. The monoid B_{n}^{+*} is presented by generators A_{n} and relations:

$$
\begin{equation*}
a_{p, q} a_{r, s}=a_{r, s} a_{p, q} \quad \text { for }[p, q] \text { and }[r, s] \text { disjoint or nested, } \tag{2}
\end{equation*}
$$

https://daneshyari.com/en/article/8896285

Download Persian Version:

https://daneshyari.com/article/8896285

Daneshyari.com

[^0]: E-mail address: jean.fromentin@math.cnrs.fr.

