ARTICLE IN PRESS

Journal of Algebra $\, \bullet \, \bullet \, \bullet \, (\, \bullet \, \bullet \, \bullet \, \bullet \,) \, \bullet \, \bullet \, \bullet \, - \, \bullet \, \bullet \, \bullet \,$

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

The congruence subgroup problem for low rank free and free metabelian groups

David El-Chai Ben-Ezra*, Alexander Lubotzky

Institute of Mathematics, The Hebrew University, Jerusalem, 91904, Israel

A R T I C L E I N F O

Article history: Received 15 August 2016 Available online xxxx Communicated by N. Andruskiewitsch, A. Elduque, E. Khukhro and I. Shestakov

To Efim Zelmanov, a friend and a leader

MSC: primary 19B37, 20H05 secondary 20E18, 20E36, 20E05

Keywords: Congruence subgroup problem Profinite groups Automorphism groups Free groups Free metabelian groups

ABSTRACT

The congruence subgroup problem for a finitely generated group Γ asks whether $\widehat{Aut}(\Gamma) \rightarrow Aut(\hat{\Gamma})$ is injective, or more generally, what is its kernel $C(\Gamma)$? Here \hat{X} denotes the profinite completion of X.

In this paper we first give two new short proofs of two known results (for $\Gamma = F_2$ and Φ_2) and a new result for $\Gamma = \Phi_3$:

- (1) $C(F_2) = \{e\}$ when F_2 is the free group on two generators.
- (2) $C(\Phi_2) = \hat{F}_{\omega}$ when Φ_n is the free metabelian group on n generators, and \hat{F}_{ω} is the free profinite group on \aleph_0 generators.
- (3) $C(\Phi_3)$ contains \hat{F}_{ω} .

Results (2) and (3) should be contrasted with an upcoming result of the first author showing that $C(\Phi_n)$ is abelian for $n \geq 4$.

@ 2017 Elsevier Inc. All rights reserved.

* Corresponding author.

E-mail addresses: davidel-chai.ben-ezra@mail.huji.ac.il (D.E.-C. Ben-Ezra), alex.lubotzky@mail.huji.ac.il (A. Lubotzky).

 $\label{eq:http://dx.doi.org/10.1016/j.jalgebra.2017.01.001 \\ 0021-8693/© 2017 Elsevier Inc. All rights reserved.$

Please cite this article in press as: D.E.-C. Ben-Ezra, A. Lubotzky, The congruence subgroup problem for low rank free and free metabelian groups, J. Algebra (2017), http://dx.doi.org/10.1016/j.jalgebra.2017.01.001

2

D.E.-C. Ben-Ezra, A. Lubotzky / Journal of Algebra $\bullet \bullet \bullet$ ($\bullet \bullet \bullet \bullet$) $\bullet \bullet \bullet - \bullet \bullet \bullet$

1. Introduction

The classical congruence subgroup problem (CSP) asks for, say, $G = SL_n(\mathbb{Z})$ or $G = GL_n(\mathbb{Z})$, whether every finite index subgroup of G contains a principal congruence subgroup, i.e. a subgroup of the form $G(m) = \ker(G \to GL_n(\mathbb{Z}/m\mathbb{Z}))$ for some $0 \neq m \in \mathbb{Z}$. Equivalently, it asks whether the natural map $\hat{G} \to GL_n(\mathbb{Z})$ is injective, where \hat{G} and $\hat{\mathbb{Z}}$ are the profinite completions of the group G and the ring \mathbb{Z} , respectively. More generally, the CSP asks what is the kernel of this map. It is a classical 19th century result that the answer is negative for n = 2. Moreover (but not so classical, cf. [20,15]), the kernel, in this case, is \hat{F}_{ω} – the free profinite group on a countable number of generators. On the other hand, for $n \geq 3$, the map is injective and the kernel is therefore trivial.

The CSP can be generalized as follows: Let Γ be a group and M a finite index characteristic subgroup of it. Denote:

$$G(M) = \ker (Aut(\Gamma) \to Aut(\Gamma/M)).$$

Such a finite index normal subgroup of $G = Aut(\Gamma)$ will be called a "principal congruence subgroup" and a finite index subgroup of G which contains such a G(M) for some Mwill be called a "congruence subgroup". Now, the CSP for Γ asks whether every finite index subgroup of G is a congruence subgroup. When Γ is finitely generated, $Aut(\hat{\Gamma})$ is profinite and the CSP is equivalent to the question (cf. [8], §1 and §3): Is the map $\hat{G} = Aut(\hat{\Gamma}) \rightarrow Aut(\hat{\Gamma})$ injective? More generally, it asks what is the kernel $C(\Gamma)$ of this map.

As $GL_n(\mathbb{Z}) = Aut(\mathbb{Z}^n)$, the classical congruence subgroup results mentioned above can therefore be reformulated as $C(A_2) = \hat{F}_{\omega}$ while $C(A_n) = \{e\}$ for $n \geq 3$, when $A_n = \mathbb{Z}^n$ is the free abelian group on n generators.

Very few results are known when Γ is non-abelian. A very surprising result was proved in [2] by Asada by methods of algebraic geometry:

Theorem 1.1. $C(F_2) = \{e\}$, *i.e.*, the free group on two generators has the congruence subgroup property, namely $Aut(F_2) \rightarrow Aut(\hat{F}_2)$ is injective.

A purely group theoretic proof for this theorem was given by Bux–Ershov–Rapinchuk [8]. Our first goal in this paper is to give an easier and more direct proof of Theorem 1.1, which also give a better quantitative estimate: we give an explicitly constructed congruence subgroup G(M) of $Aut(F_2)$ which is contained in a given finite index subgroup H of $Aut(F_2)$ of index n. Our estimates on the index of M in F_2 as a function of n are substantially better than those of [8] – see Theorems 2.7 and 2.9.

We then turn to $\Gamma = \Phi_2$, the free metabelian group on two generators. The initial treatment of Φ_2 is similar to F_2 , but quite surprisingly, the first named author showed in [4] a negative answer, i.e. $C(\Phi_2) \neq \{e\}$. We also give a shorter proof of this result, deducing that:

Download English Version:

https://daneshyari.com/en/article/8896309

Download Persian Version:

https://daneshyari.com/article/8896309

Daneshyari.com