Rules of Three for commutation relations ${ }^{\hat{\alpha}}$

Jonah Blasiak ${ }^{\text {a,*, }}$, Sergey Fomin ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, Drexel University, Philadelphia, PA 19104, United States
b Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, United States

A R T I C L E I N F O

Article history:

Received 23 August 2016
Available online xxxx
Communicated by
N. Andruskiewitsch, A. Elduque,
E. Khukhro and I. Shestakov

Dedicated to Efim Zelmanov on his 60th birthday

$M S C$:

primary 16S99
secondary 05E05

Keywords:

Noncommutative symmetric function
Commutation relations
Elementary symmetric function
Rule of Three
Dehn diagram

A B S T R A C T

We study the phenomenon in which commutation relations for sequences of elements in a ring are implied by similar relations for subsequences involving at most three indices at a time.
© 2017 Elsevier Inc. All rights reserved.

What I tell you three times is true.
The Hunting of the Snark, by Lewis Carroll

[^0]http://dx.doi.org/10.1016/j.jalgebra.2016.12.023
0021-8693/© 2017 Elsevier Inc. All rights reserved.

Introduction

In this paper, we investigate the following surprisingly widespread phenomenon which we call The Rule of Three: in order for a particular kind of commutation relation to hold for subsequences of elements of a ring labeled by any subset of indices, it is enough that these relations hold for subsets of size one, two, and three.

Here is a typical "Rule of Three" statement. Let $g_{1}, \ldots, g_{N}, h_{1}, \ldots, h_{N}$ be invertible elements in an associative ring. Then the following are equivalent (cf. Theorem 3.4):

- for any subsequence of indices $1 \leq s_{1}<\cdots<s_{m} \leq N$, the element $g_{s_{m}} \cdots g_{s_{1}}$ commutes with both $h_{s_{m}} \cdots h_{s_{1}}$ and $h_{s_{m}}+\cdots+h_{s_{1}}$;
- the above condition holds for all subsequences of length $m \leq 3$.

We establish many results of this form, including

- Rules of Three for noncommutative elementary symmetric functions (Section 1);
- Rules of Three for generating functions over rings (Section 2);
- Rules of Three for sums and products (Section 3).

Proofs are given in Sections 4-8. For reference, Theorems 2.5 and 2.12 are proved in Section 5; Theorem 3.2 is proved in Section 6; Theorems 1.1, 3.4, 3.5, 3.10, and 3.11 are proved in Section 7; and Theorem 1.6 is proved in Section 8.

1. Rules of Three for noncommutative symmetric functions

Let $\mathbf{u}=\left(u_{1}, \ldots, u_{N}\right)$ be an ordered N-tuple of elements in a ring R. (We informally view u_{1}, \ldots, u_{N} as "noncommuting variables.") For an integer k, the noncommutative elementary symmetric function $e_{k}(\mathbf{u}) \in R$ is defined by

$$
\begin{equation*}
e_{k}(\mathbf{u})=\sum_{N \geq i_{1}>i_{2}>\cdots>i_{k} \geq 1} u_{i_{1}} u_{i_{2}} \cdots u_{i_{k}} . \tag{1.1}
\end{equation*}
$$

(By convention, $e_{0}(\mathbf{u})=1$ and $e_{k}(\mathbf{u})=0$ if $k<0$ or $k>N$.) More generally, for a subset $S \subset\{1, \ldots, N\}$, we denote

$$
\begin{equation*}
e_{k}\left(\mathbf{u}_{S}\right)=\sum_{\substack{i_{1}>i_{2}>\ldots>i_{k} \\ i_{1}, \ldots, i_{k} \in S}} u_{i_{1}} u_{i_{2}} \cdots u_{i_{k}} \tag{1.2}
\end{equation*}
$$

Again, $e_{0}\left(\mathbf{u}_{S}\right)=1$, and $e_{k}\left(\mathbf{u}_{S}\right)=0$ unless $0 \leq k \leq|S|$. (Here $|S|$ is the cardinality of S.)

Theorem 1.1 (The Rule of Three for noncommutative elementary symmetric functions). Let $\mathbf{u}=\left(u_{1}, \ldots, u_{N}\right)$ and $\mathbf{v}=\left(v_{1}, \ldots, v_{N}\right)$ be ordered N-tuples of elements in a ring R.

https://daneshyari.com/en/article/8896310

Download Persian Version:

https://daneshyari.com/article/8896310

Daneshyari.com

[^0]: (ty Partially supported by NSF grants DMS-14071174 (J. B.) and DMS-1361789 (S. F.).

 * Corresponding author.

 E-mail addresses: jblasiak@gmail.com (J. Blasiak), fomin@umich.edu (S. Fomin).

