Invariants of maximal tori and unipotent constituents of some quasi-projective characters for finite classical groups

A.E. Zalesski
Department of Physics, Mathematics and Informatics, National Academy of Sciences of Belarus, 66 Nezavisimosti prospekt, Minsk, Belarus

A R T I C L E I N F O

Article history:

Received 22 September 2016
Available online xxxx
Communicated by
N. Andruskiewitsch, A. Elduque,
E. Khukhro and I. Shestakov

Dedicated to Efim Zelmanov on occasion of his 60th birthday

Keywords:

Finite classical groups
Representation theory
Projective module
Characters

Abstract

We study the decomposition of certain reducible characters of classical groups as the sum of irreducible ones. Let \mathbf{G} be an algebraic group of classical type with defining characteristic $p>0, \mu$ a dominant weight and W the Weyl group of \mathbf{G}. Let $G=G(q)$ be a finite classical group, where q is a p-power. For a weight μ of \mathbf{G} the sum s_{μ} of distinct weights $w(\mu)$ with $w \in W$ viewed as a function on the semisimple elements of G is known to be a generalized Brauer character of G called an orbit character of G. We compute, for certain orbit characters and every maximal torus T of G, the multiplicity of the trivial character 1_{T} of T in s_{μ}. The main case is where $\mu=(q-1) \omega$ and ω is a fundamental weight of \mathbf{G}. Let $S t$ denote the Steinberg character of G. Then we determine the unipotent characters occurring as constituents of $s_{\mu} \cdot S t$ defined to be 0 at the p-singular elements of G. Let β_{μ} denote the Brauer character of a representation of $S L_{n}(q)$ arising from an irreducible representation of \mathbf{G} with highest weight μ. Then we determine the unipotent constituents of the characters $\beta_{\mu} \cdot S t$ for $\mu=(q-1) \omega$, and also for some other μ (called strongly q-restricted). In addition, for strongly

E-mail address: alexandre.zalesski@gmail.com.
http://dx.doi.org/10.1016/j.jalgebra.2017.06.003
0021-8693/© 2017 Published by Elsevier Inc.
restricted weights μ, we compute the multiplicity of 1_{T} in the restriction $\left.\beta_{\mu}\right|_{T}$ for every maximal torus T of G.
© 2017 Published by Elsevier Inc.

1. Introduction

The groups G under consideration in this paper are $G L_{n}(q), S L_{n+1}(q), S p_{2 n}(q)$, $S O_{2 n+1}(q), q$ odd, $S O_{2 n}^{ \pm}(q), q$ odd, $\operatorname{Spin}_{2 n}^{ \pm}(q), q$ even. Let \bar{F}_{q} be the algebraic closure of a finite field F_{q} of q elements. Let \mathbf{G} be the respective algebraic group over \bar{F}_{q}, and W the Weyl group of \mathbf{G}. For the notion of a maximal torus in G see $[9,4]$. The maximal tori of G, up to G-conjugation, are in bijection with the conjugacy classes of W unless $G=S O_{2 n}^{-}(q), q$ odd, and $\operatorname{Spin}_{2 n}^{-}(q), q$ even $[4,3.3 .3]$. So we denote by T_{w} any maximal torus of G from the class corresponding to $w \in W$.

Let \mathbf{T} be the group of diagonal matrices in $G L_{n}\left(\bar{F}_{q}\right)$. Let ε_{i} be the mapping sending every diagonal matrix $\operatorname{diag}\left(x_{1}, \ldots, x_{n}\right)$ to the i-th entry $x_{i}(1 \leq i \leq n)$. There is a natural embedding $G L_{n}\left(\bar{F}_{q}\right) \rightarrow \mathbf{G}$ which identifies \mathbf{T} with a maximal torus of \mathbf{G}. So $\varepsilon_{1}, \ldots, \varepsilon_{n}$ can be viewed as weights of \mathbf{G}, as well as $\sum a_{i} \varepsilon_{i}$ for $a_{i} \in \mathbb{Z}$. Set $\omega_{i}=\varepsilon_{1}+\cdots+\varepsilon_{i}$ $(1 \leq i \leq n)$. Then ω_{i} is a fundamental weight of \mathbf{G}, unless $i=n$ for \mathbf{G} of type B_{n} and $i=n-1, n$ for type D_{n}. As W acts on the weights of \mathbf{G}, we may set $W_{i}=\{w \in W$: $\left.w\left(\omega_{i}\right)=\omega_{i}\right\}$. It is well known that W_{i} is the Weyl group of a certain Levi subgroup \mathbf{L}_{i} of \mathbf{G}. For finite groups $A \subset B$ denote by 1_{A} the trivial character of A and by 1_{A}^{B} the induced character. For a weight μ of \mathbf{G} let s_{μ} denote the respective orbit character. Note that for a maximal torus T of G the restriction $\left.s_{\mu}\right|_{T}$ is an ordinary character of T, and $\left(s_{\mu} \mid T, 1_{T}\right)$ denotes the inner product of the characters $\left.s_{\mu}\right|_{T}$ and the trivial character 1_{T} of T.

Theorem 1.1. Let \mathbf{G}, G, W be as above, $G \neq \operatorname{SO}_{2 n}^{-}(q), \operatorname{Spin}_{2 n}^{-}(q)$, and for $w \in W$ let T_{w} be a respective maximal torus in G. Let $\mu=(q-1) \omega_{i}$, where $i \in\{1, \ldots, n\}$, and s_{μ} be the respective orbit character. Then $\left(\left.s_{\mu}\right|_{T_{w}}, 1_{T_{w}}\right)=1_{W_{i}}^{W}(w)$.

Unipotent characters are introduced by Deligne and Lusztig [8]. For any character σ of G we denote by $u(\sigma)$ the "unipotent part" of σ, which is the sum of all unipotent irreducible constituents of σ regarding multiplicities. For the notions of Harish-Chandra induction and the Steinberg character see [9, Ch. 4, 9]. If τ is a character of a Levi subgroup L of G then $\tau^{\# G}$ denotes the Harish-Chandra induced character.

Theorem 1.2. Let $\mathbf{G}, G, W, \omega_{i}, W_{i}$ be as above, $\mu=(q-1) \omega_{i}(1 \leq i \leq n)$ and let s_{μ} be the orbit character of G corresponding to μ. If $G=S O_{2 n}^{-}(q)$ or $\operatorname{Spin}_{2 n}^{-}(q)$, assume $j<n$. Then $u\left(s_{\mu} \cdot S t\right)=S t_{L_{i}}^{\# G}$, where L_{i} is a Levi subgroup of G with Weyl group W_{i} and $S t_{i}$ the Steinberg character of L_{i}.

https://daneshyari.com/en/article/8896343

Download Persian Version:

https://daneshyari.com/article/8896343

Daneshyari.com

