ARTICLE IN PRESS

YJABR:16248

Journal of Algebra ••• (••••) •••-•••

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Invariants of maximal tori and unipotent constituents of some quasi-projective characters for finite classical groups

A.E. Zalesski

Department of Physics, Mathematics and Informatics, National Academy of Sciences of Belarus, 66 Nezavisimosti prospekt, Minsk, Belarus

ARTICLE INFO

Article history: Received 22 September 2016 Available online xxxx Communicated by N. Andruskiewitsch, A. Elduque, E. Khukhro and I. Shestakov

Dedicated to Efim Zelmanov on occasion of his 60th birthday

Keywords: Finite classical groups Representation theory Projective module Characters

ABSTRACT

We study the decomposition of certain reducible characters of classical groups as the sum of irreducible ones. Let ${\bf G}$ be an algebraic group of classical type with defining characteristic $p > 0, \mu$ a dominant weight and W the Weyl group of **G**. Let G = G(q) be a finite classical group, where q is a p-power. For a weight μ of **G** the sum s_{μ} of distinct weights $w(\mu)$ with $w \in W$ viewed as a function on the semisimple elements of G is known to be a generalized Brauer character of Gcalled an orbit character of G. We compute, for certain orbit characters and every maximal torus T of G, the multiplicity of the trivial character 1_T of T in s_{μ} . The main case is where $\mu = (q-1)\omega$ and ω is a fundamental weight of **G**. Let St denote the Steinberg character of G. Then we determine the unipotent characters occurring as constituents of $s_{\mu} \cdot St$ defined to be 0 at the *p*-singular elements of G. Let β_{μ} denote the Brauer character of a representation of $SL_n(q)$ arising from an irreducible representation of G with highest weight μ . Then we determine the unipotent constituents of the characters $\beta_{\mu} \cdot St$ for $\mu = (q-1)\omega$, and also for some other μ (called strongly q-restricted). In addition, for strongly

E-mail address: alexandre.zalesski@gmail.com.

 $\label{eq:http://dx.doi.org/10.1016/j.jalgebra.2017.06.003} 0021-8693 @ 2017 Published by Elsevier Inc.$

Please cite this article in press as: A.E. Zalesski, Invariants of maximal tori and unipotent constituents of some quasi-projective characters for finite classical groups, J. Algebra (2017), http://dx.doi.org/10.1016/j.jalgebra.2017.06.003

A.E. Zalesski / Journal of Algebra ••• (••••) •••-•••

restricted weights μ , we compute the multiplicity of 1_T in the restriction $\beta_{\mu}|_T$ for every maximal torus T of G. © 2017 Published by Elsevier Inc.

1. Introduction

The groups G under consideration in this paper are $GL_n(q)$, $SL_{n+1}(q)$, $Sp_{2n}(q)$, $SO_{2n+1}(q), q \text{ odd}, SO_{2n}^{\pm}(q), q \text{ odd}, Spin_{2n}^{\pm}(q), q \text{ even. Let } \overline{F}_q$ be the algebraic closure of a finite field F_q of q elements. Let **G** be the respective algebraic group over \overline{F}_q , and W the Weyl group of **G**. For the notion of a maximal torus in G see [9,4]. The maximal tori of G, up to G-conjugation, are in bijection with the conjugacy classes of W unless $G = SO_{2n}^{-}(q), q$ odd, and $Spin_{2n}^{-}(q), q$ even [4, 3.3.3]. So we denote by T_w any maximal torus of G from the class corresponding to $w \in W$.

Let **T** be the group of diagonal matrices in $GL_n(\overline{F}_q)$. Let ε_i be the mapping sending every diagonal matrix $\operatorname{diag}(x_1, \ldots, x_n)$ to the *i*-th entry x_i $(1 \le i \le n)$. There is a natural embedding $GL_n(\overline{F}_q) \to \mathbf{G}$ which identifies **T** with a maximal torus of **G**. So $\varepsilon_1, \ldots, \varepsilon_n$ can be viewed as weights of G, as well as $\sum a_i \varepsilon_i$ for $a_i \in \mathbb{Z}$. Set $\omega_i = \varepsilon_1 + \cdots + \varepsilon_i$ $(1 \leq i \leq n)$. Then ω_i is a fundamental weight of **G**, unless i = n for **G** of type B_n and i = n - 1, n for type D_n . As W acts on the weights of G, we may set $W_i = \{w \in W : i \in W : i \in W\}$ $w(\omega_i) = \omega_i$. It is well known that W_i is the Weyl group of a certain Levi subgroup \mathbf{L}_i of **G**. For finite groups $A \subset B$ denote by 1_A the trivial character of A and by 1_A^B the induced character. For a weight μ of **G** let s_{μ} denote the respective orbit character. Note that for a maximal torus T of G the restriction $s_{\mu}|_T$ is an ordinary character of T, and $(s_{\mu}|T, 1_T)$ denotes the inner product of the characters $s_{\mu}|_T$ and the trivial character 1_T of T.

Theorem 1.1. Let \mathbf{G}, G, W be as above, $G \neq SO_{2n}^{-}(q), Spin_{2n}^{-}(q)$, and for $w \in W$ let T_w be a respective maximal torus in G. Let $\mu = (q-1)\omega_i$, where $i \in \{1, \ldots, n\}$, and s_{μ} be the respective orbit character. Then $(s_{\mu}|_{T_w}, 1_{T_w}) = 1_{W_i}^W(w)$.

Unipotent characters are introduced by Deligne and Lusztig [8]. For any character σ of G we denote by $u(\sigma)$ the "unipotent part" of σ , which is the sum of all unipotent irreducible constituents of σ regarding multiplicities. For the notions of Harish-Chandra induction and the Steinberg character see [9, Ch. 4, 9]. If τ is a character of a Levi subgroup L of G then $\tau^{\#G}$ denotes the Harish-Chandra induced character.

Theorem 1.2. Let $\mathbf{G}, G, W, \omega_i, W_i$ be as above, $\mu = (q-1)\omega_i$ $(1 \le i \le n)$ and let s_{μ} be the orbit character of G corresponding to μ . If $G = SO_{2n}^{-}(q)$ or $Spin_{2n}^{-}(q)$, assume j < n. Then $u(s_{\mu} \cdot St) = St_{L_i}^{\#G}$, where L_i is a Levi subgroup of G with Weyl group W_i and St_i the Steinberg character of L_i .

Please cite this article in press as: A.E. Zalesski, Invariants of maximal tori and unipotent constituents of some quasi-projective characters for finite classical groups, J. Algebra (2017), http://dx.doi.org/10.1016/j.jalgebra.2017.06.003

Download English Version:

https://daneshyari.com/en/article/8896343

Download Persian Version:

https://daneshyari.com/article/8896343

Daneshyari.com