

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Groups of automorphisms with TNI-centralizers [☆]

Gülin Ercan ^{a,*}, İsmail Ş. Güloğlu ^b

^a Department of Mathematics, Middle East Technical University, Ankara, Turkey

b Department of Mathematics, Doğuş University, Istanbul, Turkey

ARTICLE INFO

Article history: Received 23 February 2017 Available online 20 November 2017 Communicated by E.I. Khukhro

MSC: 20D10 20D15 20D45

Keywords: TNI-subgroup Automorphism Centralizer Frobenius group

ABSTRACT

A subgroup H of a finite group G is called a TNI-subgroup if $N_G(H)\cap H^g=1$ for any $g\in G\setminus N_G(H)$. Let A be a group acting on G by automorphisms where $C_G(A)$ is a TNI-subgroup of G. We prove that G is solvable if and only if $C_G(A)$ is solvable, and determine some bounds for the nilpotent length of G in terms of the nilpotent length of $C_G(A)$ under some additional assumptions. We also study the action of a Frobenius group FH of automorphisms on a group G if the set of fixed points $C_G(F)$ of the kernel F forms a TNI-subgroup, and obtain a bound for the nilpotent length of G in terms of the nilpotent lengths of $C_G(F)$ and $C_G(H)$. © 2017 Elsevier Inc. All rights reserved.

1. Introduction

We call a subgroup H of a group G a trivial normalizer intersection subgroup (simply a TNI-subgroup) of G if $N_G(H) \cap H^g = 1$ for any $g \in G \setminus N_G(H)$. Clearly, a normal subgroup is a TNI-subgroup. This concept was introduced in the work [2] of Hering in which he studied a finite group G containing a TNI-subgroup H and determined the structure of H^G in case |H| is even and H^G is nonsolvable.

[☆] This work has been supported by the Research Project TÜBİTAK 114F223.

^{*} Corresponding author.

E-mail addresses: ercan@metu.edu.tr (G. Ercan), iguloglu@dogus.edu.tr (İ.Ş. Güloğlu).

In the present paper we investigate the structure of a finite group G admitting a group A as a group of automorphisms such that the subgroup $C_G(A)$ of fixed points of A in G is a TNI-subgroup of G. This can be regarded as a generalization of the so-called fixed point free action which assumes that $C_G(A) = 1$. In this case, if (|G|, |A|) = 1 or A is nilpotent, it is known that the group G is solvable. We denote the nilpotent length of the solvable group G by f(G). In the coprime case if for every proper subgroup A_0 of A and for every irreducible elementary abelian A_0 -invariant section V of G, there exists $v \in V$ such that $C_{A_0}(v) = C_{A_0}(V)$, then the nilpotent length of G is bounded by the length $\ell(A)$ of the longest chain of subgroups of A (see [7] for a survey until then). There is a longstanding conjecture in this research area:

Let A and G be finite groups such that A acts fixed point freely on G by automorphisms. Assume that either the action is coprime or A is nilpotent. Then $f(G) \leq \ell(A)$.

This problem is still open even in the coprime case. Although it seems rather out of place to look at the much more general situation where $C_G(A)$ is a TNI-subgroup, Hering's work encouraged us to investigate the structure of such a group G. As a first result along these lines in Section 3 we prove

Theorem A. Let A be a finite group that acts coprimely on the finite group G by automorphisms. If $C_G(A)$ is a solvable TNI-subgroup of G, then G is solvable.

By [6], in case where A is of prime order f(G) may exceed $f(C_G(A))$ at most by two. In the remainder of this section under the condition that $C_G(A)$ is a TNI-subgroup we obtain

Theorem B. Let A be a coprime automorphism of prime order of a finite solvable group G such that $C_G(A)$ is a TNI-subgroup of G. Then $f(G) \leq f(C_G(A)) + 1$. In particular, $f(G) \leq 4$ when $C_G(A)$ is nonnormal.

This can be regarded as a generalization of the well known result due to Thompson which asserts that a finite group admitting a fixed point free automorphism of prime order is nilpotent.

As an immediate consequence of Theorem B we observe the following bound for the nilpotent length of a solvable group G acted on by a group A coprimely in such a way that $C_G(B)$ is a TNI-subgroup of G for any nontrivial proper subgroup B of A.

Let A be a solvable group acting coprimely on the finite solvable group G by automorphisms in such a way that $C_G(B)$ is a TNI-subgroup of G for any subgroup B of A. Then $f(G) \leq f(C_G(A)) + \ell(A)$. In particular $f(G) \leq \ell(A) + 3$ whenever $C_G(A)$ is nonnormal. (Corollary 3.1)

Notice that under this hypothesis if one assumes additionally that $C_G(A) = 1$ then $f(G) \leq \ell(A)$ as claimed in the above conjecture.

Download English Version:

https://daneshyari.com/en/article/8896385

Download Persian Version:

https://daneshyari.com/article/8896385

Daneshyari.com