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1. Introduction

The main objects of investigation of this article are the ring-valued functors X —
GW(X) and X — GW(X) and their subfunctors of units GW*(X) and GW*(X).
Recall that for a scheme X, GW(X) is the Grothendieck-Witt ring of X [11], and for
X smooth over a perfect field, GW(X) is the unramified Grothendieck—Witt ring of
X [20, Chapter 3]. The connection is that for X (essentially) smooth local, we have
GW(X)=GW(X), cf. [21, Theorem Al.

Our principal contribution is the following. We show that if k is a field of charac-
teristic not 2, then the group of units GW* (k) has a canonical structure of a module
over GW (k), related to Rost’s multiplicative transfer on GW (k). We use this to give a
novel presentation of GW*(k), see Proposition 25, and to construct a homotopy module
T, such that Ty = GW™. See Appendix A for some recollections regarding homotopy
modules.

Organisation  We now provide an overview of the article. The remaining subsections of
the introduction provide a more leisurely account of some of the key ideas mentioned
here.

In Section 2, we recall the results of Rost and his students on multiplicative transfers
for the Grothendieck—Witt ring GW (X)) [22,12]. Specifically, the multiplicative transfer
of Rost is defined using a certain norm functor for modules, also defined by Rost. We show
that Rost’s norm construction coincides with a more general construction of Ferrand [7],
in the situation where both apply.

In Section 3, using this comparison of norm constructions, we show that the as-
signment Fét/S 3 X — GW(X) defines a Tambara functor. Here Fét/S denotes the
category of finite étale schemes over S, and by a Tambara functor on this category we
mean the evident extension of the notion from [27]; see Definition 8 for details. Using a
result of Tambara [27, Theorem 6.1], this also yields an alternative proof that the norm
maps extend from Iso(Bil(e)) to GW (e).

Section 4 contains our main observation. We show that if k is a field of characteristic
not 2, then the group of units GW* (k) C GW (k) is a module over GW (k), in a unique
way that is compatible with the projection formula. By this we mean that if A/k is finite
étale, then for z € GW(A) and y € GW* (k) the following formula holds:

ytT‘A/k(x) = NA/k((y|A)x)

Note that we write the module structure as “exponentiation”. This result is Proposi-
tion 22. Uniqueness of the GW (k)-module structure follows from the fact that as an
abelian group, GW (k) is generated by the traces of finite étale algebras, in fact traces
of degree at most 2 extensions suffice. This is explained before Proposition 22. Exis-
tence/well-definedness is a consequence of Serre’s splitting principle; see Lemma 20. In
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