

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

κ -Existentially closed groups $\stackrel{\bigstar}{\approx}$

Otto H. Kegel^a, Mahmut Kuzucuoğlu^{b,*}

 ^a Mathematisches Institut, Albert Ludwigs Universitat, Eckerstr. 1, 79104 Freiburg, Germany
^b Department of Mathematics, Middle East Technical University, Ankara, 06531, Turkey

ARTICLE INFO

Article history: Received 27 July 2017 Available online 19 December 2017 Communicated by E.I. Khukhro

MSC: 20B27 20B35 20E06

Keywords: Infinite symmetric groups Universal groups Centralizers of subgroups Existentially closed groups

ABSTRACT

Let κ be an infinite cardinal. The class of κ -existentially closed groups is defined and their basic properties are studied. Moreover, for an uncountable cardinal κ , uniqueness of κ -existentially closed groups are shown, provided that they exist. We also show that for each regular strong limit cardinal κ , there exists κ -existentially closed groups. The structure of centralizers of subgroups of order less than κ in a κ -existentially group G are determined up to isomorphism namely, for any subgroup $F \leq G_{\nu}$ in G with $|F| < \kappa$, the subgroup $C_G(F)$ is isomorphic to an extension of Z(F) by G.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

To set the scene: Let $X = \{x_i ; i \in I\}$ be a non-empty set of variables that freely generate the free group F(X). For any group G consider the free product G * F(X). The

* Corresponding author.

ALGEBRA

 $^{^{*}}$ Research supported in part by the Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Germany and The Scientific and Technological Research Council (TUBITAK) of Turkey.

E-mail addresses: otto.h.kegel@math.uni-freiburg.de (O.H. Kegel), matmah@metu.edu.tr (M. Kuzucuoğlu).

elements $g \in G \leq G * F(X)$ will be called *constants* of the free product, the elements, $\omega \in G * F(X)$ not in *G* words or *terms* over *G*. For a word $\omega \in G * F(X)$ the statement " $\omega = 1$ " will be called an *equation* over *G* in the variables occurring in ω , the statement " $\omega \neq 1$ " an *in-equation*.

A non-empty set or system Σ of equations and in-equations over the group G is consistent (or solvable) over G if there exists a group $H \supseteq G$ and a homomorphism $\varphi: G * F(X) \to H$ with $\varphi(g) = g$ for $g \in G$ such that the set $\varphi(\Sigma)$ is simultaneously a true statement in H. Such a homomorphism φ will be referred to as a solution map (or a realization) of Σ in H.

Side-stepping the problem whether a given system Σ of the equations and in-equations over G is consistent and actually finding such a group $H \supseteq G$ with a solution map φ for Σ , we follow W.R. Scott [14] in defining, for every infinite cardinal κ , the class \mathcal{E}_{κ} of all κ -existentially closed (κ -e.c.)-groups.

Definition. The group G is κ -existentially closed if $|G| \geq \kappa$ and if for every, over G consistent system Σ of equations and in-equations involving fewer than κ constants and variables, there is a solution map $\varphi : G * F(X) \to G$ for Σ in G itself.

Observe that for the infinite cardinals κ and κ' the relation $\kappa < \kappa'$ entails $\mathcal{E}_{\kappa'} \subseteq \mathcal{E}_{\kappa}$. For the limit ordinal $\lambda = \sup\{\kappa ; \kappa < \lambda\}$ one has $\mathcal{E}_{\lambda} = \bigcap_{\kappa < \lambda} \mathcal{E}_{\kappa}$.

Since the books of Lyndon–Schupp [11] and Higman–Scott [6] came out, the notion of existentially closed group became better known. Here we use the stronger version of κ -existentially closed group alluded to already in the founding papers by W.R. Scott [14] and A. Macintyre [12]. For uncountable cardinals κ , we prove some general results and one which corresponds to Steinitz's characterization of algebraically closed fields by the absolute transcendence degree algebraic closure and characteristic [15]. In particular, we prove the uniqueness theorem for such groups provided that they exist. For the existentially closed groups see [8] also the survey paper of Leinen in [10].

2. Preliminaries

Initially, we shall assume that the classes \mathcal{E}_{κ} are non-empty and study the structure of its members. Existence of κ -existentially closed groups for any given infinite cardinality κ is not clear at the moment, shall show existence for regular strong limit cardinals in Section 4.

Lemma 2.1. For $G \in \mathcal{E}_{\kappa}$ and the abstract group A with $|A| < \kappa$ there is a subgroup of G isomorphic to A.

Proof. Rewrite the multiplication table of A as a system Σ of equations and in-equations over G with 1 as the only constant in the variables $X = \{x_a; a \in A\}$:

Download English Version:

https://daneshyari.com/en/article/8896404

Download Persian Version:

https://daneshyari.com/article/8896404

Daneshyari.com