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Abstract

The purpose of the paper is to study the annihilators of local cohomology of the
extended Rees rings. We will prove that if (A, m) is a noetherian local ring with infinite
residue field, and a is a uniform local cohomological annihilator of A, then there is an
integer n such that (at)n is a uniform local cohomological annihilator of the extended
Rees ring A[t, t−1I] for any m-primary ideal I of A.

1 Introduction
Let A be a noetherian ring, I an ideal of A, and t an indeterminate over A. Consider

A[t, t−1] as a graded ring in the natural way with deg(t) = 1. The extended Rees
ring of A associated to I is the graded subring R = A[t, t−1I] of the ring A[t, t−1]. If
I = (a1, a2, · · · , ar) then R[t, t−1I] = R[t, t−1a1, · · · , t−1ar], so that R is also a noetherian
ring. It is known that dim(R) = dim(A) + 1 [cf. Ma].

Let grI(A) =
⊕

n≥0 In/In+1 be the associated graded ring of A with respect to I.
One can show easily that

R/tR � grI(A) and R/(1 − t)R � A,

so that we can regard grI(A) as a deformation of the original ring A, with R as total
space of the deformation, in the sense that the values t = 1 and 0 correspond to A

and grI(A), respectively. Such deformation plays an important role in the theory of
algebraic geometry [cf. Fu].

It is well known that if (A, m) is a d-dimensional Cohen-Macaulay (abbr. CM)
local ring and I is an ideal generated by a system of parameters a1, a2, · · · , ad, then
the extended Rees ring R is also a CM ring [cf, BH], and the result is not valid for all
m-primary ideals. This means that there is a m-primary ideal I and a maximal ideal Q of
A[t, t−1I] such that Hi

Q(A[t, t−1I]) may be nonzero for some i (i < ht(Q)). In fact, such
local cohomology modules are rarely finitely generated. In this paper, we will study
the annihilators of these modules.

Recalling that an element a ∈ A is said to be a uniform local cohomological annihi-
lator of A, if it is not lying in any minimal prime ideal of A, and for any maximal ideal
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