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In this paper we investigate the idea of a tropical critical 
point of the superpotential for the full flag variety of type A. 
Recall that associated to an irreducible representation of 
G = SLn(C) are various polytopes whose integral points 
parameterize a basis for the representation, e.g. the Gelfand–
Zetlin polytope. Such polytopes can be constructed via 
the theory of geometric crystals by tropicalising a certain 
function, and in fact, the function involved coincides with the 
superpotential from the Landau–Ginzburg model for G/B
coming from mirror symmetry. In mirror symmetry a special 
role is played by the critical points of the superpotential, and 
motivated by this, we give a definition of the tropical critical 
points and use it to find a canonical point in each polytope. We 
then characterise the highest weights for which this tropical 
critical point is integral and therefore corresponds to a basis 
vector of the corresponding representation. Finally we give an 
interpretation of the tropical critical point by constructing a 
special vector in the representation using Borel–Weil theory 
and conjecturing a correspondence between this vector and 
the tropical critical point.
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1. Introduction

Let G be a simple complex algebraic group, T a choice of maximal torus and B ⊃ T a 
choice of Borel subgroup, with opposite Borel subgroup B−. Given λ ∈ P+, a dominant 
integral weight of T , let Vλ be the irreducible representation of G with highest weight λ
and V ∗

λ the dual representation. Consider the case where λ = 2ρ, the sum of the positive 
roots of G. There is a special vector in the representation V ∗

λ which has geometric 
origin and is defined as follows. First recall that Borel–Weil theory gives a geometric 
construction of V ∗

λ as H0(G/B, Lλ), where Lλ is the line bundle

G×B C−λ = {(g, x)}/(g, x) ∼ (gb, λ(b)x)

(see [22]). If λ = 2ρ then L2ρ happens to be the anti-canonical bundle of G/B, so 
V ∗
λ is given by the global sections of the anti-canonical bundle. Now, there exists a 

special meromorphic volume form ω on G/B, defined uniquely up to sign. This form was 
first introduced in [19] where it was defined as a natural generalisation of the unique 
torus-invariant volume form on a torus inside a toric variety. It is the meromorphic 
differential form on G/B with simple poles exactly along the divisor given by the union 
of all the Schubert divisors and all the opposite Schubert divisors, see [14, Section 2]. 
Similar volume forms also appear more recently in work on mirror symmetry and cluster 
varieties, see [9,3]. Now if we take the inverse of ω, we get a special global section of the 
anti-canonical bundle of G/B, and thus a distinguished vector in the representation V ∗

2ρ. 
We would like to give an interpretation of this special vector.

Example 1.1. In the case G = SL2(C), we have G/B � P1 via 
(
g1 g2
g3 g4

)
�→ x = g1

g3
. 

The Schubert divisors are given by x = 0 and x = ∞ and the volume form ω is given 
by dxx which has a simple pole at x = 0 and x = ∞. The representation V ∗

2ρ is given by 
〈x2 ∂

∂x , x
∂
∂x , 

∂
∂x 〉C and ω−1 is given by x ∂

∂x ∈ V ∗
2ρ.

Restrict now to the case G = SLn(C). We will interpret this special section ω−1 using 
the mirror dual Landau–Ginzburg model for G/B. A Landau–Ginzburg model for the 
full flag variety of type A was first introduced by Givental [8], in the form of a regular 
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