
JID:YJABR AID:16481 /FLA [m1L; v1.227; Prn:14/12/2017; 14:54] P.1 (1-35)
Journal of Algebra ••• (••••) •••–•••

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Strong involutions in finite special linear groups of 
odd characteristic ✩

John D. Dixon a, Cheryl E. Praeger b,∗, Ákos Seress 1

a School of Mathematics and Statistics, Carleton University, Ottawa, ON K1S 5B6, 
Canada
b School of Physics, Mathematics and Computing, The University of Western 
Australia, Crawley, WA 6009, Australia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 14 March 2017
Available online xxxx
Communicated by Eamonn O’Brien

MSC:
20G40
20F69
20D60
20P05
68W20

Keywords:
Finite classical groups
Involution centralisers
Recognition algorithms

Let t be an involution in GL(n, q) whose fixed point space E+
has dimension k between n/3 and 2n/3. For each g ∈ GL(n, q)
such that ttg has even order, 〈ttg〉 contains a unique involution 
z(g) which commutes with t. We prove that, with probability 
at least c/ logn (for some c > 0), the restriction z(g)|E+ is an 
involution on E+ with fixed point space of dimension between 
k/3 and 2k/3. This result has implications in the analysis of 
the complexity of recognition algorithms for finite classical 
groups in odd characteristic. We discuss how similar results 
for involutions in other finite classical groups would solve a 
major open problem in our understanding of the complexity 
of constructing involution centralisers in those groups.
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1. Introduction

The 2001 paper of Altseimer and Borovik [1] marked a break-through in computa-
tional group theory by using involution centralisers to distinguish between the simple 
Lie type groups PSp(2n, q) and Ω(2n + 1, q), with q odd. These are groups which share 
many properties, such as having the same order, and they had proved difficult to dis-
tinguish computationally. The paper [1] inspired the work of Parker and Wilson [11]
who demonstrated that involution-centraliser methods could be used for solving sev-
eral problems previously believed to be computationally difficult, and gave complexity 
analyses for methods to construct involutions and their centralisers in quasisimple Lie 
type groups in odd characteristic. These methods were based on Bray’s algorithm [2] for 
constructing involution centralisers in finite groups. Our aim is to improve the analysis 
given by Parker and Wilson of Bray’s algorithm in the case of finite special linear groups 
in odd characteristic. This is part of a program to improve the complexity analyses of a 
number of algorithms for computing with Lie type groups. In particular, we focus on its 
application in the recognition algorithm for special linear groups of Leedham-Green and 
O’Brien in [7]. In the rest of this section we give a brief overview of these applications 
to set the scene for our main result Theorem 1.1, and to pose some open problems.

1.1. Algorithmic background

Leedham-Green and O’Brien [7] describe and analyse an algorithm which constructs 
a ‘standard generating set’ for a finite classical group G = SX(n, q) (q odd) in its natural 
representation. Here (abusing the notation in [7] slightly) SX is one of SL, SU, Sp, SOε, or 
Ωε, where ε ∈ {+, −, ◦}. In [7, Section 3] the authors define a standard generating set for 
SX (see especially [7, Table 1] for all groups except those of type Ωε, and [7, Lemmas 
3.2-3.4] for those of type Ωε). The algorithm is recursive in the sense that it finds a 
certain direct decomposition Vm ⊕ Vn−m of the underlying n-dimensional vector space, 
where dim(Vm) = m, n

3 ≤ m ≤ 2n
3 and the decomposition is orthogonal if SX �= SL. 

It then constructs classical groups acting on each of Vm and Vn−m and finds standard 
generators for them recursively. The algorithm concludes by ‘patching together’ these 
standard generating sets for the subgroups to obtain standard generators for G.

The key challenge is to obtain an appropriate direct decomposition Vm ⊕ Vn−m and 
construct the classical subgroups acting on each direct summand. This is done in [7] by 
finding an involution t ∈ G with ±1-eigenspaces of suitable dimensions m, n −m, then 
constructing (the second derived subgroup of) its centraliser CG(t), and extracting the 
central ‘factors’ of CG(t) induced on the eigenspaces of t.

The analysis given in [7] is based on the construction of O(n) random elements at 
several stages in the algorithm (see [7, bottom of page 835]). O’Brien mentioned in private 
communication to the second and third authors, probably in 2008, that the practical 
performance of the algorithm was much faster than the analysis in [7] suggested. He 
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