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We consider low dimensional diffuse Bieberbach groups. In 
particular we classify diffuse Bieberbach groups up to dimen-
sion 6. We also answer a question from [7, page 887] about 
the minimal dimension of a non-diffuse Bieberbach group 
which does not contain the three-dimensional Hantzsche–
Wendt group.
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1. Introduction

The class of diffuse groups was introduced by B. Bowditch in [2]. By definition a group 
Γ is diffuse, if every finite non-empty subset A ⊂ Γ has an extremal point, i.e. an element 
a ∈ A such that for any g ∈ Γ \ {1} either ga or g−1a is not in A. Equivalently (see [7]) 
a group Γ is diffuse if it does not contain a non-empty finite set without extremal points.
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The interest in diffuse groups follows from Bowditch’s observation that they have the 
unique product property.1

Originally unique products were introduced in the study of group rings of discrete, 
torsion-free groups. More precisely, it is easily seen that if a group Γ has the unique 
product property, then it satisfies Kaplansky’s unit conjecture. In simple terms this 
means that the units in the group ring C[Γ] are all trivial, i.e. of the form λg with 
λ ∈ C∗ and g ∈ Γ. For more information about these objects we refer the reader to 
[1], [9, Chapter 10] and [7]. In part 3 of [7] the authors prove that any torsion-free 
crystallographic group (Bieberbach group) with trivial center is not diffuse. By definition 
a crystallographic group is a discrete and cocompact subgroup of the group O(n) �Rn of 
isometries of the Euclidean space Rn. From Bieberbach’s theorem (see [12]) the normal 
subgroup T of all translations of any crystallographic group Γ is a free abelian group of 
finite rank and the quotient group (holonomy group) Γ/T = G is finite.

In [7, Theorem 3.5] it is proved that for a finite group G:

1. If G is not solvable then any Bieberbach group with holonomy group isomorphic to 
G is not diffuse.

2. If every Sylow subgroup of G is cyclic then any Bieberbach group with holonomy 
group isomorphic to G is diffuse.

3. If G is solvable and has a non-cyclic Sylow subgroup then there are examples of 
Bieberbach groups with holonomy group isomorphic to G which are and examples 
which are not diffuse.

Using the above the authors of [7] classify non-diffuse Bieberbach groups in dimensions 
≤ 4. One of the most important non-diffuse groups is the 3-dimensional Hantzsche–
Wendt group, denoted in [11] by ΔP . For the following presentation

ΔP = 〈x, y | x−1y2x = y−2, y−1x2y = x−2〉

the maximal abelian normal subgroup is generated by x2, y2 and (xy)2 (see [6, page 154]). 
At the end of part 3.4 of [7] the authors ask the following question.

Question 1. What is the smallest dimension d0 of a non-diffuse Bieberbach group which 
does not contain ΔP ?

The answer for the above question was the main motivation for us. In fact we prove, in 
the next section, that d0 = 5. Moreover, we extend the results of part 3.4 of [7] and with 
support of computer, we present the classification of all Bieberbach groups in dimension 
d ≤ 6 which are (non)diffuse.

1 The group Γ is said to have the unique product property if for every two finite non-empty subsets 
A, B ⊂ Γ there is an element in the product x ∈ AḂ which can be written uniquely in the form x = ab
with a ∈ A and b ∈ B.
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