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A NEW METHOD FOR RECOGNISING SUZUKI GROUPS

JOHN N. BRAY AND HENRIK BÄÄRNHIELM

Abstract. We present a new algorithm for constructive recognition of the
Suzuki groups in their natural representations. The algorithm runs in Las
Vegas polynomial time given a discrete logarithm oracle. An implementation

is available in the Magma computer algebra system.

1. Introduction

In [1] and [2], algorithms for constructive recognition of the Suzuki groups in the
natural representation are presented. They depend on a technical conjecture, which
is still open, although supported by substantial experimental evidence.

Here we present a new algorithm for this problem, which does not depend on
any such conjectures, and which is also more efficient.

We shall use the notation of [2], but for completeness we state the important
points here. The ground finite field is Fq where q = 22m+1 for some m > 0, and we

define t = 2m+1 so that xt2 = x2 for every x ∈ Fq. For a, b ∈ Fq and λ ∈ F
×
q , define

the following matrices.

U(a, b) =

⎡
⎢⎢⎣

1 0 0 0
a 1 0 0

at+1 + b at 1 0
at+2 + ab+ bt b a 1

⎤
⎥⎥⎦ , (1)

M ′(λ) =

⎡
⎢⎢⎣
λt+1 0 0 0
0 λ 0 0
0 0 λ−1 0
0 0 0 λ−t−1

⎤
⎥⎥⎦ , (2)

T =

⎡
⎢⎢⎣

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎤
⎥⎥⎦ . (3)

If ω ∈ Fq is a primitive element, then Sz(q) = 〈U(1, 0),M ′(ω), T 〉. This is our
standard copy of Sz(q), denoted Σ. This group acts on the Suzuki ovoid, which is

O = {(1 : 0 : 0 : 0)} ∪ {
(at+2 + ab+ bt : b : a : 1) | a, b ∈ Fq

}
. (4)

Let F = {U(a, b) | a, b ∈ Fq } and H =
{
M ′(λ) | λ ∈ F

×
q

}
. Then FH = HF is

the stabiliser of (1 : 0 : 0 : 0) ∈ O, a maximal subgroup of Sz(q) and FH =
〈U(1, 0),M ′(ω)〉 ∼= Fq.Fq.F

×
q . The group Sz(q) is partitioned into two sets as

Sz(q) = FH ∪ FHTF = HF ∪HFTF . (5)

If G is a conjugate of Sz(q), so that Gc = Sz(q) for some c ∈ GL(4, q), we say
that the ordered triple of elements α, h, γ ∈ G are rewriting generators for G with
respect to c if

• αc ∈ F , hc ∈ FH, γc = T ,
• α has order 4 and h has odd order not dividing r− 1 for any r such that q

is a non-trivial power of r.
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