The existence of a polynomial factorization map for some compact linear groups

O.G. Styrt

A R T I C L E I N F O

Article history:

Received 21 November 2014
Available online 11 November 2016
Communicated by Vera Serganova

MSC:

14L24
22 C 05
Keywords:
Lie group
Factorization map of an action

Abstract

It is proved that each of compact linear groups of one special type admits a polynomial factorization map onto a real vector space. More exactly, the group is supposed to be non-commutative one-dimensional and to have two connected components, and its representation should be the direct sum of three irreducible two-dimensional real representations at least two of them being faithful.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

For a group G and a set M, we will write «action $G: M$ » for «action of G on M » and call a surjective map from M to some set a factorization map of such an action if its fibres coincide with G-orbits. For a Lie group G, we will denote by G^{0} its connected component. Let \mathbb{T} be the multiplicative Lie group $\{\lambda \in \mathbb{C}:|\lambda|=1\}$.

In the paper, we prove that each of the compact linear groups of one certain type admits a polynomial factorization map onto a vector space.

This problem arose from the question when the topological quotient of a compact linear group is homeomorphic to a vector space that was researched in [1-5]. In [1], the result for finite groups is obtained. Namely, the necessary and sufficient condition is

[^0]that the group is generated by pseudoreflections. Moreover, for the most of such groups, a polynomial factorization map onto a vector space is explicitly constructed. In [2], the case of infinite groups with commutative connected components is considered. For any $n_{1}, n_{2}, n_{3} \in \mathbb{N}$, denote by $G\left(n_{1}, n_{2}, n_{3}\right)$ the subgroup of the group $\mathbf{G} \mathbf{L}_{\mathbb{R}}\left(\mathbb{C}^{3}\right)$ generated by the operators $\left(z_{1}, z_{2}, z_{3}\right) \rightarrow\left(\lambda^{n_{1}} z_{1}, \lambda^{n_{2}} z_{2}, \lambda^{n_{3}} z_{3}\right)(\lambda \in \mathbb{T})$ and $\left(z_{1}, z_{2}, z_{3}\right) \rightarrow\left(\bar{z}_{1}, \bar{z}_{2}, \bar{z}_{3}\right)$. In [2], it is proved that $\mathbb{C}^{3} /\left(G\left(n_{1}, n_{2}, n_{3}\right)\right) \cong \mathbb{R}^{5}$ for all $n_{1}, n_{2}, n_{3} \in \mathbb{N}$. However, the proof is based on purely topological aspects. Unlikely, for one of the main examples considered in [2], namely, for the linear $\operatorname{group}\left\{\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right): \lambda_{1}, \ldots, \lambda_{n} \in \mathbb{T}\right.$, $\left.\prod_{i=1}^{n} \lambda_{i}^{a_{i}}=1\right\} \subset \mathbf{G L}\left(\mathbb{C}^{n}\right)\left(n, a_{1}, \ldots, a_{n} \in \mathbb{N}\right)$, an \mathbb{R}-polynomial factorization map onto a vector space is given explicitly. In this work, we prove that each of the linear groups $G(1,1, n) \subset \mathbf{G} \mathbf{L}_{\mathbb{R}}\left(\mathbb{C}^{3}\right)(n \in \mathbb{N})$ admits an \mathbb{R}-polynomial factorization map $\mathbb{C}^{3} \rightarrow \mathbb{R}^{5}$.

Fix an arbitrary number $n \in \mathbb{N}$. Set $G:=G(1,1, n) \subset \mathbf{G L}_{\mathbb{R}}\left(\mathbb{C}^{3}\right)$.
The group $G \subset \mathbf{G} \mathbf{L}_{\mathbb{R}}\left(\mathbb{C}^{3}\right)$ is generated by the operators $\left(z_{1}, z_{2}, z_{3}\right) \rightarrow\left(\lambda z_{1}, \lambda z_{2}, \lambda^{n} z_{3}\right)$ $(\lambda \in \mathbb{T})$ and $\left(z_{1}, z_{2}, z_{3}\right) \rightarrow\left(\bar{z}_{1}, \bar{z}_{2}, \bar{z}_{3}\right)$. The map $\mathbb{C}^{3} \rightarrow \mathbb{C}^{3}, z \rightarrow w$, where $w_{1}:=z_{1}+z_{2}$, $w_{2}:=\overline{\left(z_{1}-z_{2}\right)}=\bar{z}_{1}+\bar{z}_{2}, w_{3}:=z_{3}$, is an \mathbb{R}-linear automorphism. In terms of the so-defined coordinates w_{1}, w_{2}, w_{3}, the linear group $G \subset \mathbf{G L}_{\mathbb{R}}\left(\mathbb{C}^{3}\right)$ is generated by the operators $\left(w_{1}, w_{2}, w_{3}\right) \rightarrow\left(\lambda w_{1}, \bar{\lambda} w_{2}, \lambda^{n} w_{3}\right)(\lambda \in \mathbb{T})$ and $\tau:\left(w_{1}, w_{2}, w_{3}\right) \rightarrow\left(w_{2}, w_{1}, \bar{w}_{3}\right)$. The group $G^{0} \subset \mathbf{G} \mathbf{L}_{\mathbb{R}}\left(\mathbb{C}^{3}\right)$ consists of all the operators $\left(w_{1}, w_{2}, w_{3}\right) \rightarrow\left(\lambda w_{1}, \bar{\lambda} w_{2}, \lambda^{n} w_{3}\right)$ $(\lambda \in \mathbb{T})$. Also, $G=G^{0} \sqcup\left(G^{0} \tau\right)$ and $G / G^{0} \cong \mathbb{Z}_{2}$.

In this paper, we will show that the (obviously, \mathbb{R}-polynomial) map

$$
\mathbb{C}^{3} \rightarrow \mathbb{R}^{5} \cong \mathbb{C}^{2} \oplus \mathbb{R},\left(w_{1}, w_{2}, w_{3}\right) \rightarrow\left(w_{2}^{n} w_{3}+w_{1}^{n} \bar{w}_{3}, w_{1} w_{2},\left|w_{3}\right|^{2}-\left(\left|w_{1}\right|^{2 n}+\left|w_{2}\right|^{2 n}\right)\right)
$$

is a factorization map of the linear group $G \subset \mathbf{G L}_{\mathbb{R}}\left(\mathbb{C}^{3}\right)$.

2. Proof of the main result

Denote by Γ the group $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$, by $\gamma_{0}, \gamma^{\prime}$, $\gamma^{\prime \prime}$ its non-trivial elements, and by Γ_{0} the subgroup $\left\{e, \gamma_{0}\right\} \subset \Gamma$. Consider the set $C:=\mathbb{R}_{\geqslant 0}^{3} \times \mathbb{C}^{3}$ and the action Γ : C uniquely defined by the relations $\gamma^{\prime} p:=\left(r_{2}, r_{1}, r_{3}, v_{1}, v_{2}, v_{3}\right)$ and $\gamma^{\prime \prime} p:=\left(r_{1}, r_{2}, r_{3}, v_{2}, v_{1}, v_{3}\right)$ $\left(p=\left(r_{1}, r_{2}, r_{3}, v_{1}, v_{2}, v_{3}\right) \in C\right)$. Since $G / G^{0} \cong \mathbb{Z}_{2} \cong \Gamma_{0}$, there exists a homomorphism $\rho: G \rightarrow \Gamma_{0}$ such that Ker $\rho=G^{0}$ and $\rho(\tau)=\gamma_{0}$. The subset $M \subset C$ of all elements $\left(r_{1}, r_{2}, r_{3}, v_{1}, v_{2}, v_{3}\right) \in C$ such that $\left|v_{1}\right|=r_{2}^{n} r_{3},\left|v_{2}\right|=r_{1}^{n} r_{3},\left|v_{3}\right|=r_{1} r_{2}, v_{1} v_{2}=r_{3}^{2} v_{3}^{n}$ is Γ_{0}-invariant.

The map $\pi_{0}: \mathbb{C}^{3} \rightarrow C,\left(w_{1}, w_{2}, w_{3}\right) \rightarrow\left(\left|w_{1}\right|,\left|w_{2}\right|,\left|w_{3}\right|, w_{2}^{n} w_{3}, w_{1}^{n} \bar{w}_{3}, w_{1} w_{2}\right)$ satisfies $\pi_{0}\left(\mathbb{C}^{3}\right)=M \subset C$, and its fibres coincide with the orbits of the action $G^{0}: \mathbb{C}^{3}$. It is easy to see that $\pi_{0} \circ \tau \equiv \gamma_{0} \circ \pi_{0}$. Thus,

$$
\begin{array}{ll}
\forall g \in G & \pi_{0} \circ g \equiv \rho(g) \circ \pi_{0} \\
\forall x, y \in \mathbb{C}^{3} & (y \in G x) \quad \Leftrightarrow \quad\left(\pi_{0}(y) \in \Gamma_{0}\left(\pi_{0}(x)\right)\right) . \tag{2.1}
\end{array}
$$

https://daneshyari.com/en/article/8896553

Download Persian Version:
https://daneshyari.com/article/8896553

Daneshyari.com

[^0]: E-mail address: oleg_styrt@mail.ru.

