

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Torification of diagonalizable group actions on toroidal schemes [★]

Dan Abramovich a,*, Michael Temkin b

ARTICLE INFO

Article history: Received 28 December 2015 Available online 21 October 2016 Communicated by Steven Dale Cutkosky

Keywords:
Toric geometry
Toroidal embeddings
Logarithmic structures
Group actions
Diagonalizable groups

ABSTRACT

We study actions of diagonalizable groups on toroidal schemes (i.e. logarithmically regular logarithmic schemes). In particular, we show that for so-called toroidal actions the quotient is again a toroidal scheme. Our main result constructs for an arbitrary action a canonical torification by an equivariant blowings up. This extends earlier results of Abramovich–de Jong, Abramovich–Karu–Matsuki–Włodarczyk, and Gabber in various aspects.

© 2016 Elsevier Inc. All rights reserved.

Contents

1.	Introduction	280
2.	Toroidal schemes	282
3.	Toroidal actions	292
	Torification	
5.	Torification by blowings up	327
Refere	ences	336
Index		338

E-mail addresses: abrmovic@math.brown.edu (D. Abramovich), temkin@math.huji.ac.il (M. Temkin).

^a Department of Mathematics, Box 1917, Brown University, Providence, RI 02912, USA

^b Einstein Institute of Mathematics, The Hebrew University of Jerusalem, Giv'at Ram, Jerusalem, 91904, Israel

 $^{^{\,\,\}dot{\,}}$ This research is supported by BSF grant 2010255.

^{*} Corresponding author.

1. Introduction

1.1. Toroidal actions, quotients and torification

Consider a variety X with toroidal structure and an action of a group G on X. Torification is a blowing-up process $X' \to X$ which guarantees that the quotient map $X' \to X' /\!\!/ G$ is toroidal. It was introduced in [1] when G is finite for the purpose of proving resolution of singularities; and in [3] when $G = \mathbb{G}_m$ for proving factorization of birational maps.

In this paper we consider G diagonalizable, and prove a general torification result for arbitrary toroidal schemes (see Section 2.3), not necessarily over a field:

Theorem 1.1.1 (See Theorem 4.6.5). Assume that a diagonalizable group G acts in a relatively affine manner on a toroidal scheme (X, D). Then there is a G-equivariant modification $F_{(X,D)}: X' \to X$, such that, denoting by D' be the union of the preimage of D and the exceptional divisor of $F_{(X,D)}$, we have

- (i) The pair (X', D') is toroidal and the natural G-action on (X', D') is toroidal.
- (ii) The morphism $F_{(X,D)}$ is functorial with respect to surjective strongly equivariant strict morphisms $h: (Y,E) \to (X,D)$ of toroidal schemes in the sense that $F_{(Y,E)}$ is the base change of $F_{(X,D)}$.

We refer to Section 1.3 and [5, Section 5.3.1] for the notions of relatively affine actions and strongly equivariant morphisms, and to Section 2.3.16 for the notion of morphisms between toroidal schemes. A slightly more precise statement of Theorem 4.6.5 in terms of blowing up is provided in Theorem 5.4.5.

Theorem 1.1.1 builds on a more detailed Theorem 4.5.1 which assumes the action to be G-simple, see Section 3.1.4. We further optimize that result as follows:

Theorem 1.1.2 (See Theorem 5.4.2). Assume that a toroidal scheme (X, D) is provided with a relatively affine, G-simple action of a diagonalizable group $G = \mathbf{D}_L$. Assume X contains a strongly equivariant dense open set U on which G acts freely. There exist ideal sheaves I_X and \tilde{I}_X on X and $\tilde{X} = X /\!\!/ G$ with resulting blowings up $f_{(X,D)} \colon X' \to X$ and $\tilde{f}_{(X,D)} \colon \tilde{X}' \to \tilde{X}$, such that I_X is locally generated by G-invariants, and, denoting by D' the union of the preimage of D and the exceptional divisor of $f_{(X,D)}$, we have

- (i) The pair (X', D') is toroidal and the natural G-action on (X', D') is toroidal.
- (ii) The morphism of quotients $f_{(X,D)} /\!\!/ G : X' /\!\!/ G \to \widetilde{X}$ is $\widetilde{f}_{(X,D)}$.
- (iii) The blowings up $f_{(X,D)}$ and $\widetilde{f}_{(X,D)}$ are functorial with respect to surjective strongly equivariant strict morphisms $h: (Y,E) \to (X,D)$ of toroidal schemes: denoting $\widetilde{h} = h \not \mid G$, we have $h^*(I_X) = I_Y$, $f_{(Y,E)}^{\text{tor}} = f_{(X,D)}^{\text{tor}} \times_X Y$, $\widetilde{h}^*(\widetilde{I}_X) = \widetilde{I}_Y$, and $\widetilde{f}_{(Y,E)} = \widetilde{f}_{(X,D)} \times_{\widetilde{X}} \widetilde{Y}$.
- (iv) If $V \subseteq X$ is a strongly equivariant open subset such that the action on $(V, D|_V)$ is toroidal then I_X restricts to the unit ideal on V and $V \times_X X' = V$.

Download English Version:

https://daneshyari.com/en/article/8896554

Download Persian Version:

https://daneshyari.com/article/8896554

<u>Daneshyari.com</u>