Existence and nonexistence of positive solutions to some fully nonlinear equation in one dimension

Patricio Felmer ${ }^{\text {a }}$, Norihisa Ikoma ${ }^{\mathrm{b}, *, 1}$
${ }^{\text {a }}$ Departamento de Ingeniería Matemática and CMM (UMI 2807 CNRS), Universidad de Chile, Casilla 170 Correo 3, Santiago, Chile
${ }^{\text {b }}$ Faculty of Mathematics and Physics, Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, Ishikawa 9201192, Japan

A R T I C L E I N F O

Article history:

Received 22 July 2017
Accepted 19 July 2018
Available online xxxx
Communicated by H. Brezis

Keywords:

Pucci operators
Positive solutions
Leray-Schauder degree

A B S T R A C T

In this paper, we consider the existence (and nonexistence) of solutions to

$$
-\mathcal{M}_{\lambda, \Lambda}^{ \pm}\left(u^{\prime \prime}\right)+V(x) u=f(u) \quad \text { in } \mathbf{R}
$$

where $\mathcal{M}_{\lambda, \Lambda}^{+}$and $\mathcal{M}_{\lambda, \Lambda}^{-}$denote the Pucci operators with $0<$ $\lambda \leq \Lambda<\infty, V(x)$ is a bounded function, $f(s)$ is a continuous function and its typical example is a power-type nonlinearity $f(s)=|s|^{p-1} s(p>1)$. In particular, we are interested in positive solutions which decay at infinity, and the existence (and nonexistence) of such solutions is proved.
© 2018 Elsevier Inc. All rights reserved.

[^0]https://doi.org/10.1016/j.jfa.2018.07.009
0022-1236/© 2018 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we study the existence and nonexistence of solutions to the following nonlinear differential equations

$$
\begin{equation*}
-\mathcal{M}_{\lambda, \Lambda}^{ \pm}\left(u^{\prime \prime}\right)+V(x) u=f(u) \quad \text { in } \mathbf{R}, \quad u>0 \quad \text { in } \mathbf{R}, \quad \lim _{|x| \rightarrow \infty} u(x)=0 \tag{1.1}
\end{equation*}
$$

Here V and f are given functions, $0<\lambda \leq \Lambda<\infty$ constants and $\mathcal{M}_{\lambda, \Lambda}^{ \pm}(s)$ the Pucci operators defined by

$$
\mathcal{M}_{\lambda, \Lambda}^{+}(s):=\left\{\begin{array}{ll}
\Lambda s & \text { if } s \geq 0, \\
\lambda s & \text { if } s<0,
\end{array} \quad \mathcal{M}_{\lambda, \Lambda}^{-}(s):= \begin{cases}\lambda s & \text { if } s \geq 0 \\
\Lambda s & \text { if } s<0\end{cases}\right.
$$

We remark that when $\lambda=\Lambda$, one has $\mathcal{M}_{\lambda, \Lambda}^{ \pm}\left(u^{\prime \prime}\right)=\lambda u^{\prime \prime}$.
One of motivations to study equations like (1.1) is to see to what extent the properties and the results in the semilinear case can be generalized to the fully nonlinear case. When $\lambda=\Lambda,(1.1)$ is well studied and it is proved that (1.1) has a solution for various $V(x)$ and $f(s)$ by critical point theory. Here we refer to $[11,12]$ and references therein.

On the other hand, when $\lambda \neq \Lambda$, (1.1) is not studied well. In [7], instead of (1.1), the authors study the existence of positive radial solutions of

$$
\begin{equation*}
-\mathcal{M}_{\lambda, \Lambda}^{ \pm}\left(D^{2} u\right)+\gamma u=f(u) \quad \text { in } B_{R}(0) \subset \mathbf{R}^{N}, \quad u=0 \quad \text { on } \partial B_{R}(0) \tag{1.2}
\end{equation*}
$$

as well as

$$
-\mathcal{M}_{\lambda, \Lambda}^{ \pm}\left(D^{2} u\right)+u=u^{p} \quad \text { in } \mathbf{R}^{N}
$$

Here $N \geq 3,0 \leq \gamma$ and $1<p<p_{*}^{ \pm}$where $p_{*}^{ \pm}$are critical exponents for $\mathcal{M}_{\lambda, \Lambda}^{ \pm}$(see also [1, $3,5,6]$). Recently, in [9], the authors show the existence of infinitely many radial solutions of (1.2) when $\gamma=0$ and $f(s)=|s|^{p-1} s$. Moreover, in [9], the inhomogeneous case is also considered and the existence of infinitely many solutions is shown on a bounded annulus.

In this paper, we aim to treat the inhomogeneous equation on the unbounded domain \mathbf{R}. We emphasis that in general the existence of solutions to (1.1) is delicate when the equation is inhomogeneous and the domain is unbounded. Indeed, we shall prove the nonexistence result when $V(x)$ is monotone. See Theorem 1.2 below.

We first deal with the existence result. For $V(x)$, we assume
(V1) $V \in W^{1, \infty}(\mathbf{R})$ and $0<\inf _{\mathbf{R}} V=: V_{0}$.
(V2) For a.a. $x \in(-\infty, 0)$ and a.a. $y \in(0, \infty), V^{\prime}(x) \leq 0 \leq V^{\prime}(y)$.
(V3) $V(0) \leq V_{\infty}:=\lim _{|x| \rightarrow \infty} V(x)$ and there exist $C_{0}, \xi_{0}>0$ such that

$$
\left(\text { for } \mathcal{M}_{\lambda, \Lambda}^{+}\right) \quad(0 \leq) V_{\infty}-V(x) \leq C_{0} \exp \left(-2 \sqrt{\frac{V_{\infty}}{\Lambda}+\xi_{0}}|x|\right) \quad \text { for all } x \in \mathbf{R}
$$

https://daneshyari.com/en/article/8896572

Download Persian Version:

https://daneshyari.com/article/8896572

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: pfelmer@dim.uchile.cl (P. Felmer), ikoma@se.kanazawa-u.ac.jp, ikoma@math.keio.ac.jp (N. Ikoma).
 ${ }^{1}$ Present address: Department of Mathematics, Faculty of Science and Technology, Keio University, Yagami Campus: 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 2238522, Japan.

