

Contents lists available at ScienceDirect

Journal of Functional Analysis

www.elsevier.com/locate/jfa

Noncommutative multi-parameter Wiener–Wintner type ergodic theorem

癯

Guixiang Hong^{a,b}, Mu Sun^{c,*}

^a School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China ^b Hubei Key Laboratory of Computational Science, Wuhan University, Wuhan 430072, China

^c School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, China

ARTICLE INFO

Article history: Received 2 June 2017 Accepted 18 May 2018 Available online 26 May 2018 Communicated by Stefaan Vaes

MSC: primary 46L53, 46L55 secondary 47A35, 37A99

Keywords:

Noncommutative L_p -spaces Noncommutative dynamical systems Wiener–Wintner type ergodic theorem Multi-parameter individual ergodic theorem

АВЅТ КАСТ

In this paper, we establish a multi-parameter version of Bellow and Losert's Wiener–Wintner type ergodic theorem for dynamical systems not necessarily commutative. More precisely, we introduce a weight class \mathcal{D} , which is shown to strictly include the multi-parameter bounded Besicovitch weight class, thus including the set

$$\Lambda_d = \left\{ \{\lambda_1^{k_1} \cdots \lambda_d^{k_d}\}_{(k_1, \dots, k_d) \in \mathbb{N}^d} : (\lambda_1, \dots, \lambda_d) \in \mathbb{T}^d \right\};$$

then we prove a multi-parameter Bellow and Losert's Wiener-Wintner type ergodic theorem for the class \mathcal{D} and for a noncommutative trace preserving dynamical system $(\mathcal{M}, \tau, \mathbf{T})$, \mathcal{M} being a von Neumann algebra. Restricted to Λ_d , we also prove a noncommutative multi-parameter analogue of Bourgain's uniform Wiener-Wintner ergodic theorem.

The "noncommutativity" and the "multi-parameter" characters induce some difficulties in the proofs. For instance, our argument of proving the uniform convergence for a dense subset turns out to be quite different from the classical case since the "pointwise" argument does not work in the noncommutative setting; also to obtain the uniform convergence in the largest spaces, we need a maximal inequality between the Orlicz spaces, but it cannot be deduced by using classical

* Corresponding author. E-mail addresses: guixiang.hong@whu.edu.cn (G. Hong), musun@hust.edu.cn (M. Sun). extrapolation argument directly. Junge and Xu's noncommutative maximal inequalities with the optimal order, together with the atomic decomposition of Orlicz spaces, play the essential role in overcoming the second difficulty.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

In classical ergodic theory, (X, \mathcal{F}, μ, T) is called a finite measure-preserving dynamical system if (X, \mathcal{F}, μ) is a finite measure space and T a measure preserving transformation on X. In 1941, Wiener and Wintner [38] showed that for any such dynamical system (X, \mathcal{F}, μ, T) and any $f \in L_1(\mu)$, there exists a set X_f of full measure in X such that for any $x \in X_f$, the sequence

$$\frac{1}{n+1}\sum_{k=0}^{n}\lambda^{k}f\left(T^{k}x\right)$$

converges for all $\lambda \in \mathbb{T}$ (the 1-dimensional complex torus).

This result proved by Wiener and Wintner is outstanding to some extent. Since intuitively the intersection of the sets of convergence $X_{f,\lambda}$ (from the application of the Dunford–Schwartz ergodic theorem associated with the contraction λT to the function f) written as $\bigcap_{\lambda \in \mathbb{T}} X_{f,\lambda}$ may be empty.

To describe further development of Wiener–Wintner's theorem, let us introduce the following notion. Let $\mathcal{B}(\mu)$ be a set of functions constructed from a finite measure space (X, \mathcal{F}, μ) .

Definition 1.1. A set \mathcal{A} of sequences of complex numbers $a = \{a(k)\}_{k=0}^{\infty}$ is called \mathcal{B} -Wiener–Wintner type (in short \mathcal{B} -WW type), if for any measure preserving system (X, \mathcal{F}, μ, T) and any $f \in \mathcal{B}(\mu)$, there exists X_f of full measure in X, such that for any $x \in X_f$, the sequence

$$\frac{1}{n+1}\sum_{k=0}^{n}a(k)f\left(T^{k}x\right)$$

converges for all $a \in \mathcal{A}$.

Using this definition, Wiener–Wintner's theorem can be reformulated as: the set $\Lambda_1 = \{(\lambda^k)_{k=0}^{\infty} : \lambda \in \mathbb{T}\}$ is of L_1 -WW type. To provide a full description or characterization of the largest L_1 -WW type set (or more generally \mathcal{B} -WW type set) becomes a natural and interesting direction. Two important advances have been made since the appearance

Download English Version:

https://daneshyari.com/en/article/8896598

Download Persian Version:

https://daneshyari.com/article/8896598

Daneshyari.com