Sharpening Hölder's inequality

H. Hedenmalm ${ }^{\text {a,b,*, }}$, D.M. Stolyarov ${ }^{\text {c,d,e,2 }}$, V.I. Vasyunin ${ }^{\text {e,b, }, 1}$, P.B. Zatitskiy ${ }^{\mathrm{f}, \mathrm{d}, \mathrm{e}, 2}$
${ }^{\text {a }}$ Department of Mathematics, KTH Royal Institute of Technology, Sweden
${ }^{\text {b }}$ Department of Mathematics and Mechanics, St. Petersburg State University, 28 Universitetski pr., St. Petersburg 198504, Russia
c Department of Mathematics, Michigan State University, USA
${ }^{\text {d }}$ P. L. Chebyshev Research Laboratory, St. Petersburg State University, Russia
e St. Petersburg Department of Steklov Mathematical Institute, Russian Academy of Sciences (PDMI RAS), Russia
f Département de mathématiques et applications, École normale supérieure, CNRS, PSL Research University, France

Article history:

Received 10 October 2017
Accepted 7 May 2018
Available online 17 May 2018
Communicated by K. Seip

Keywords:

Hölder's inequality
Sharpening
Pythagorean theorem

A B S T R A C T

We strengthen Hölder's inequality. The new family of sharp inequalities we obtain might be thought of as an analog of the Pythagorean theorem for the L^{p}-spaces. Our treatment of the subject matter is based on Bellman functions of four variables.
© 2018 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

1.1. The Cauchy-Schwarz inequality and the Pythagorean theorem

Let \mathcal{H} be a Hilbert space (over the complex or the reals) with an inner product $\langle\cdot, \cdot\rangle$. The Pythagorean theorem asserts

$$
\begin{equation*}
\left|\left\langle f, \frac{e}{\|e\|}\right\rangle\right|^{2}+\left\|\mathbf{P}_{e^{\perp}} f\right\|^{2}=\|f\|^{2}, \quad e, f \in \mathcal{H}, \quad e \neq 0 \tag{1.1}
\end{equation*}
$$

Here, $\mathbf{P}_{e^{\perp}}$ denotes the orthogonal projection onto the orthogonal complement of a nontrivial vector e. At this point, we note that since $\left\|\mathbf{P}_{e^{\perp}} f\right\| \geqslant 0$, the identity (1.1) implies the Cauchy-Schwarz inequality

$$
|\langle f, e\rangle| \leqslant\|f\|\|e\|, \quad e, f \in \mathcal{H}
$$

We also note that (1.1) leads to Bessel's inequality:

$$
\sum_{n=1}^{N}\left|\left\langle f, e_{n}\right\rangle\right|^{2} \leqslant\|f\|^{2}, \quad f \in \mathcal{H}
$$

for an orthonormal system e_{1}, \ldots, e_{N} in \mathcal{H}.
We may think of (1.1) as of an expression of the precise loss in the Cauchy-Schwarz inequality. Our aim in this paper is to find an analogous improvement for the well-known Hölder inequality for L^{p} norms. Before we turn to the analysis of L^{p} spaces, we need to replace the norm of the projection, $\left\|\mathbf{P}_{e^{\perp}} f\right\|$, by an expression which does not rely on the Hilbert space structure. It is well known that

$$
\begin{equation*}
\left\|\mathbf{P}_{e^{\perp}} f\right\|=\inf _{\alpha}\|f-\alpha e\| \tag{1.2}
\end{equation*}
$$

where α ranges over all scalars (real or complex).

1.2. Background on Hölder's inequality for L^{θ}

We now consider $L^{\theta}(X, \mu)$, where (X, μ) is a standard σ-finite measure space. We sometimes focus our attention on finite measures, but typically the transfer to the more general σ-finite case is an easy exercise. The functions are assumed complex valued. Throughout the paper we assume the summability exponents are in the interval $(1,+\infty)$, in particular, $1<\theta<+\infty$. We reserve the symbol p for the range $[2, \infty)$ and q for $(1,2]$ (we also usually assume that p and q are dual in the sense $\frac{1}{p}+\frac{1}{q}=1$). Also, to simplify the presentation, we assume μ has no atoms.

Our point of departure is Hölder's inequality, which asserts that in terms of the sesquilinear form

https://daneshyari.com/en/article/8896603

Download Persian Version:

https://daneshyari.com/article/8896603

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: haakanh@math.kth.se (H. Hedenmalm), dms@pdmi.ras.ru (D.M. Stolyarov), vasyunin@pdmi.ras.ru (V.I. Vasyunin), pavelz@pdmi.ras.ru (P.B. Zatitskiy).
 ${ }^{1}$ Support by RSF grant 14-41-00010.
 ${ }^{2}$ Support by RSF grant 14-21-00035.

