

Contents lists available at ScienceDirect

Journal of Functional Analysis

www.elsevier.com/locate/jfa

Sharpening Hölder's inequality

H. Hedenmalm^{a,b,*,1}, D.M. Stolyarov^{c,d,e,2}, V.I. Vasyunin^{e,b,1}, P.B. Zatitskiy^{f,d,e,2}

^a Department of Mathematics, KTH Royal Institute of Technology, Sweden

^b Department of Mathematics and Mechanics, St. Petersburg State University,

28 Universitetski pr., St. Petersburg 198504, Russia

^c Department of Mathematics, Michigan State University, USA

^d P. L. Chebyshev Research Laboratory, St. Petersburg State University, Russia

^e St. Petersburg Department of Steklov Mathematical Institute, Russian Academy of Sciences (PDMI RAS), Russia

^f Département de mathématiques et applications, École normale supérieure, CNRS, PSL Research University, France

ARTICLE INFO

Article history: Received 10 October 2017 Accepted 7 May 2018 Available online 17 May 2018 Communicated by K. Seip

Keywords: Hölder's inequality Sharpening Pythagorean theorem

ABSTRACT

We strengthen Hölder's inequality. The new family of sharp inequalities we obtain might be thought of as an analog of the Pythagorean theorem for the L^{p} -spaces. Our treatment of the subject matter is based on Bellman functions of four variables.

© 2018 Elsevier Inc. All rights reserved.

* Corresponding author. *E-mail addresses:* haakanh@math.kth.se (H. Hedenmalm), dms@pdmi.ras.ru (D.M. Stolyarov), vasyunin@pdmi.ras.ru (V.I. Vasyunin), pavelz@pdmi.ras.ru (P.B. Zatitskiy).

 $\label{eq:https://doi.org/10.1016/j.jfa.2018.05.003} 0022\mbox{-}1236/\mbox{\odot} \ 2018 \ Elsevier \ Inc. \ All \ rights \ reserved.$

癯

 $^{^{1}}$ Support by RSF grant 14-41-00010.

 $^{^2}$ Support by RSF grant 14-21-00035.

1. Introduction

1.1. The Cauchy-Schwarz inequality and the Pythagorean theorem

Let \mathcal{H} be a Hilbert space (over the complex or the reals) with an inner product $\langle \cdot, \cdot \rangle$. The Pythagorean theorem asserts

$$\left|\left\langle f, \frac{e}{\|e\|} \right\rangle\right|^2 + \|\mathbf{P}_{e^{\perp}} f\|^2 = \|f\|^2, \qquad e, f \in \mathcal{H}, \ e \neq 0.$$
(1.1)

Here, $\mathbf{P}_{e^{\perp}}$ denotes the orthogonal projection onto the orthogonal complement of a nontrivial vector e. At this point, we note that since $\|\mathbf{P}_{e^{\perp}}f\| \ge 0$, the identity (1.1) implies the Cauchy–Schwarz inequality

$$|\langle f, e \rangle| \leqslant ||f|| \, ||e||, \qquad e, f \in \mathcal{H}.$$

We also note that (1.1) leads to Bessel's inequality:

$$\sum_{n=1}^{N} |\langle f, e_n \rangle|^2 \leqslant ||f||^2, \qquad f \in \mathcal{H},$$

for an orthonormal system e_1, \ldots, e_N in \mathcal{H} .

We may think of (1.1) as of an expression of the precise loss in the Cauchy–Schwarz inequality. Our aim in this paper is to find an analogous improvement for the well-known Hölder inequality for L^p norms. Before we turn to the analysis of L^p spaces, we need to replace the norm of the projection, $\|\mathbf{P}_{e^{\perp}}f\|$, by an expression which does not rely on the Hilbert space structure. It is well known that

$$\|\mathbf{P}_{e^{\perp}}f\| = \inf_{\alpha} \|f - \alpha e\|,\tag{1.2}$$

where α ranges over all scalars (real or complex).

1.2. Background on Hölder's inequality for L^{θ}

We now consider $L^{\theta}(X,\mu)$, where (X,μ) is a standard σ -finite measure space. We sometimes focus our attention on finite measures, but typically the transfer to the more general σ -finite case is an easy exercise. The functions are assumed complex valued. Throughout the paper we assume the summability exponents are in the interval $(1, +\infty)$, in particular, $1 < \theta < +\infty$. We reserve the symbol p for the range $[2, \infty)$ and q for (1, 2](we also usually assume that p and q are dual in the sense $\frac{1}{p} + \frac{1}{q} = 1$). Also, to simplify the presentation, we assume μ has no atoms.

Our point of departure is Hölder's inequality, which asserts that in terms of the sesquilinear form

Download English Version:

https://daneshyari.com/en/article/8896603

Download Persian Version:

https://daneshyari.com/article/8896603

Daneshyari.com