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HILBERT SPACE OPERATORS WITH COMPATIBLE OFF-DIAGONAL

CORNERS

L. LIVSHITS, G. MACDONALD1, L.W. MARCOUX1, AND H. RADJAVI1

Abstract. Given a complex, separable Hilbert space H, we characterize those operators for
which ‖PT (I − P )‖ = ‖(I − P )TP‖ for all orthogonal projections P on H. When H is finite-
dimensional, we also obtain a complete characterization of those operators for which rank (I −
P )TP = rankPT (I − P ) for all orthogonal projections P . When H is infinite-dimensional, we
show that any operator with the latter property is normal, and its spectrum is contained in either
a line or a circle in the complex plane.

1. Introduction

1.1. Let H be a complex, separable Hilbert space. By B(H), we denote the algebra of bounded,
linear operators on H. If dim H = n < ∞, then we identify H with C

n and B(H) with Mn(C).
One of the most important open problems in operator theory is the Invariant Subspace Prob-

lem, which asks whether or not every bounded, linear operator T acting on a complex, infinite-
dimensional, separable Hilbert space H admits a non-trivial invariant subspace; that is, a closed
subspace M �∈ {{0},H} for which TM ⊆ M.

We say that an operator T ∈ B(H) is (orthogonally) reductive if for each orthogonal projection
P ∈ B(H), the condition PT (I − P ) = 0 implies that (I − P )TP = 0. The Reductive Operator
Conjecture is the assertion that every reductive operator is normal. It was shown by Dyer, Pederson
and Procelli [9] that the Invariant Subspace Problem admits a positive solution if and only if the
Reductive Operator Conjecture is true.

Our goal in this paper is to study two variants of orthogonal reductivity. Let T ∈ B(H) and
P ∈ B(H) be an orthogonal projection. We refer to the operator

P⊥TP : PH → P⊥H
as an off-diagonal corner of T .

Relative to the decomposition H = PH ⊕ P⊥H, we may write T = [A B
C D ]. We refer to the

block-entries of such block-matrices via their geographic positions: NW, NE, SE, SW, and the NE
and the SW block-entries are examples of the off-diagonal corners.

In the work below, we shall be interested in two phenomena: firstly, when the operator norm of
B(= BP ) coincides with the operator norm of C(= CP ) for all projections P , and secondly, when
the rank of B coincides with the rank of C for all projections P . Clearly, any operator which satisfies
one of these two conditions is orthogonally reductive. An example is given in Section 5 below to
show that the converse to this statement is false.

In the case of normal matrices, some related work has been done by Bhatia and Choi [5]. For
instance, if the dimension of the space is 2n < ∞, and if P is a projection of rank n, it is a
consequence of the fact that the Euclidean norm of the kth column of a normal matrix coincides
with that of the kth row for all k that the Hilbert-Schmidt (or Frobenius) norm of B always equals
that of C. Further, they show that ‖B‖ ≤ √

n‖C‖, and that equality can be achieved for some
normal matrix T ∈ M2n(C) and some projection P of rank n if and only if n ≤ 3.
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