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A HELSON MATRIX WITH EXPLICIT EIGENVALUE
ASYMPTOTICS

NAZAR MIHEISI AND ALEXANDER PUSHNITSKI

Abstract. A Helson matrix (also known as a multiplicative Hankel matrix) is
an infinite matrix with entries {a(jk)} for j, k ≥ 1. Here the (j, k)’th term de-
pends on the product jk. We study a self-adjoint Helson matrix for a particular
sequence a(j) = (

√
j log j(log log j)α))−1, j ≥ 3, where α > 0, and prove that

it is compact and that its eigenvalues obey the asymptotics λn ∼ κ(α)/nα as
n → ∞, with an explicit constant κ(α). We also establish some intermediate
results (of an independent interest) which give a connection between the spectral
properties of a Helson matrix and those of its continuous analogue, which we
call the integral Helson operator.

1. Introduction

1.1. Background: Hankel matrices. We start our discussion by recalling rel-
evant facts from the theory of Hankel matrices. Let {b(j)}∞j=0 be a sequence of
complex numbers. A Hankel matrix is an infinite matrix of the form

H(b) = {b(j + k)}∞j,k=0,

considered as a linear operator in �2(Z+), Z+ = {0, 1, 2, . . . }. One of the key
examples of Hankel matrices is the Hilbert matrix, which corresponds to the choice
b(j) = 1/(j + 1). It is well known that the Hilbert matrix is bounded (but not
compact). From the boundedness of the Hilbert matrix by a simple argument one
obtains

b(j) = o(1/j), j → ∞ ⇒ H(b) is compact.

A natural family of compact self-adjoint Hankel operators of this class was con-
sidered in [13]. To state this result, we need some notation. For a compact
self-adjoint operator A, let us denote by {λ+

n (A)}∞n=1 the non-increasing sequence
of positive eigenvalues (enumerated with multiplicities taken into account), and
let λ−

n (A) = λ+
n (−A).

Theorem A. [13] Let b(j) be a sequence of real numbers defined by

b(j) = 1/(j(log j)α), j ≥ 2;

Date: November 14, 2017.
2010 Mathematics Subject Classification. 47B32, 47B35.
Key words and phrases. Hankel matrix, Helson matrix, spectral asymptotics, Schatten class.

1



Download English Version:

https://daneshyari.com/en/article/8896612

Download Persian Version:

https://daneshyari.com/article/8896612

Daneshyari.com

https://daneshyari.com/en/article/8896612
https://daneshyari.com/article/8896612
https://daneshyari.com

