

Contents lists available at ScienceDirect

### Journal of Functional Analysis

www.elsevier.com/locate/jfa

# A new index theorem for monomial ideals by resolutions



Ronald G. Douglas <sup>a,1</sup>, Mohammad Jabbari <sup>b</sup>, Xiang Tang <sup>b,\*</sup>, Guoliang Yu<sup>a,c</sup>

<sup>a</sup> Department of Mathematics, Texas A&M University, College Station, TX, 77843, USA

<sup>b</sup> Department of Mathematics, Washington University, St. Louis, MO, 63130, USA <sup>c</sup> Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, 200433, China

#### ARTICLE INFO

Article history: Received 19 September 2017 Accepted 6 April 2018 Available online 12 April 2018 Communicated by K. Seip

Keywords: Index theorem K-homology Essentially normal Hilbert module Toeplitz operators

#### ABSTRACT

We prove an index theorem for the quotient module of a monomial ideal. We obtain this result by resolving the monomial ideal by a sequence of essentially normal Hilbert modules, each of which is a direct sum of (weighted) Bergman spaces on balls.

© 2018 Elsevier Inc. All rights reserved.

#### 1. Introduction

Let  $\mathbb{B}^m$  be the unit ball in the complex space  $\mathbb{C}^m$ , and  $L^2_a(\mathbb{B}^m)$  be the Bergman space of square integrable holomorphic functions on  $\mathbb{B}^m$ , and A be the algebra  $\mathbb{C}[z_1, \dots, z_m]$ of polynomials of m variables. The algebra A plays two roles in our study: one is that A

\* Corresponding author.

xtang@math.wustl.edu (X. Tang), guoliangyu@math.tamu.edu (G. Yu).

<sup>1</sup> Recently passed away.

 $\label{eq:https://doi.org/10.1016/j.jfa.2018.04.003} \\ 0022\mbox{-}1236/ \ensuremath{\odot}\ 2018 \ Elsevier \ Inc. \ All \ rights \ reserved.$ 

E-mail addresses: rdouglas@math.tamu.edu (R.G. Douglas), jabbari@wustl.edu (M. Jabbari),

is a dense subspace of the Hilbert space  $L^2_a(\mathbb{B}^m)$ , the other is that A acts on  $L^2_a(\mathbb{B}^m)$  by Toeplitz operators.

In this article we are interested in an ideal I of A generated by monomials. Let  $\overline{I}$  be the closure of I in  $L^2_a(\mathbb{B}^m)$ , and  $Q_I$  be the quotient Hilbert space  $L^2_a(\mathbb{B}^m)/\overline{I}$ . The first author proved in [5, Theorem 2.1] that the Toeplitz operators  $T_{z_i}$ ,  $i = 1, \ldots, m$ , on  $\overline{I}$ , and the quotient  $Q_I$  are essentially normal,<sup>2</sup> i.e. the following commutators are compact

$$[T_{z_i}|_{\overline{I}}, (T_{z_j}|_{\overline{I}})^*] \in \mathcal{K}(\overline{I}), \text{ and } [T_{z_i}|_{Q_I}, (T_{z_j}|_{Q_I})^*] \in \mathcal{K}(Q_I), i, j = 1, \cdots, m$$

Let  $\mathfrak{T}(Q_I)$  be the unital  $C^*$ -algebra generated by the Toeplitz operators  $T_{z_i}|_{Q_I}$ ,  $i = 1, \dots, m$ . The above essential normality property of the Toeplitz operators gives the following extension sequence

$$0 \longrightarrow \mathcal{K} \longrightarrow \mathfrak{T}(Q_I) \longrightarrow C(\sigma_I^e) \longrightarrow 0,$$

where  $\sigma_I^e$  is the essential spectrum of the quotient tuple  $(T_{z_1}|_{Q_I}, \dots, T_{z_k}|_{Q_I})$  on  $Q_I$ , and  $\mathcal{K}$  is the algebra of compact operators. By the Gelfand–Naimark theorem,  $\sigma_I^e$  is the spectrum space of the commutative  $C^*$ -algebra  $\mathfrak{T}(Q_I)/\mathcal{K}$ . Abusing the notion, we will sometimes refer to  $\sigma_I^e$  as the essential spectrum space of the algebra  $\mathfrak{T}(Q_I)$ . The index problem we want to answer in this article is to provide a good description of the above K-homology class.

The main difficulty in answering the question above is that the ideal I in general fails to be radical. This makes the geometric ideas introduced in [8] and [10] impossible to apply directly. The seed of the main idea in this article is the following observation discussed in [8, Section 5.2]. For m = 2, consider the ideal  $I = \langle z_1^2 \rangle \subset A = \mathbb{C}[z_1, z_2]$ . The quotient  $Q_I$  can be written as the sum of two space

$$L^2_{a,1}(\mathbb{D}) \oplus L^2_{a,2}(\mathbb{D}),$$

where  $\mathbb{D}$  is the unit disk inside the complex plane  $\mathbb{C}$ , and  $L^2_{a,1}(-)$  (and  $L^2_{a,2}(-)$ ) is the weighted Bergman space with respect to the weight defined by the defining function  $1 - |z|^2$  (and  $(1 - |z|^2)^2$ ). Define the restriction map  $R_I : L^2_a(\mathbb{B}^2) \to L^2_{a,1}(\mathbb{D}) \oplus L^2_{a,2}(\mathbb{D})$  by

$$R_I(f) := (f|_{z_1=0}, \frac{\partial f}{\partial z_1}|_{z_1=0}).$$

It is not hard to introduce a Hilbert  $A = \mathbb{C}[z_1, z_2]$ -module structure on  $L^2_{a,1}(\mathbb{D}) \oplus L^2_{a,2}(\mathbb{D})$ so that the following exact sequence of Hilbert modules holds,

$$0 \longrightarrow \overline{I} \longrightarrow L^2_a(\mathbb{B}^2) \longrightarrow L^2_{a,1}(\mathbb{D}) \oplus L^2_{a,2}(\mathbb{D}) \longrightarrow 0.$$

 $<sup>^2</sup>$  Arveson [1, Corollary 2.2] proved the similar result on the Drury–Arveson space.

Download English Version:

## https://daneshyari.com/en/article/8896624

Download Persian Version:

https://daneshyari.com/article/8896624

Daneshyari.com