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We prove an index theorem for the quotient module of 
a monomial ideal. We obtain this result by resolving the 
monomial ideal by a sequence of essentially normal Hilbert 
modules, each of which is a direct sum of (weighted) Bergman 
spaces on balls.
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1. Introduction

Let Bm be the unit ball in the complex space Cm, and L2
a(Bm) be the Bergman space 

of square integrable holomorphic functions on Bm, and A be the algebra C[z1, · · · , zm]
of polynomials of m variables. The algebra A plays two roles in our study: one is that A
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is a dense subspace of the Hilbert space L2
a(Bm), the other is that A acts on L2

a(Bm) by 
Toeplitz operators.

In this article we are interested in an ideal I of A generated by monomials. Let I be 
the closure of I in L2

a(Bm), and QI be the quotient Hilbert space L2
a(Bm)/I. The first 

author proved in [5, Theorem 2.1] that the Toeplitz operators Tzi , i = 1, . . . , m, on I, 
and the quotient QI are essentially normal,2 i.e. the following commutators are compact

[Tzi |I ,
(
Tzj |I

)∗] ∈ K(I), and [Tzi |QI
,
(
Tzj |QI

)∗] ∈ K(QI), i, j = 1, · · · ,m.

Let T(QI) be the unital C∗-algebra generated by the Toeplitz operators Tzi |QI
, i =

1, · · · , m. The above essential normality property of the Toeplitz operators gives the 
following extension sequence

0 −→ K −→ T(QI) −→ C(σe
I) −→ 0,

where σe
I is the essential spectrum of the quotient tuple (Tz1 |QI

, · · · , Tzk |QI
) on QI , 

and K is the algebra of compact operators. By the Gelfand–Naimark theorem, σe
I is the 

spectrum space of the commutative C∗-algebra T(QI)/K. Abusing the notion, we will 
sometimes refer to σe

I as the essential spectrum space of the algebra T(QI). The index 
problem we want to answer in this article is to provide a good description of the above 
K-homology class.

The main difficulty in answering the question above is that the ideal I in general 
fails to be radical. This makes the geometric ideas introduced in [8] and [10] impossible 
to apply directly. The seed of the main idea in this article is the following observation 
discussed in [8, Section 5.2]. For m = 2, consider the ideal I = 〈z2

1〉 ⊂ A = C[z1, z2]. The 
quotient QI can be written as the sum of two space

L2
a,1(D) ⊕ L2

a,2(D),

where D is the unit disk inside the complex plane C, and L2
a,1(−) (and L2

a,2(−)) is the 
weighted Bergman space with respect to the weight defined by the defining function 
1 − |z|2 (and (1 − |z|2)2). Define the restriction map RI : L2

a(B2) → L2
a,1(D) ⊕ L2

a,2(D)
by

RI(f) := (f |z1=0,
∂f

∂z1
|z1=0).

It is not hard to introduce a Hilbert A = C[z1, z2]-module structure on L2
a,1(D) ⊕L2

a,2(D)
so that the following exact sequence of Hilbert modules holds,

0 −→ I −→ L2
a(B2) −→ L2

a,1(D) ⊕ L2
a,2(D) −→ 0.

2 Arveson [1, Corollary 2.2] proved the similar result on the Drury–Arveson space.



Download English Version:

https://daneshyari.com/en/article/8896624

Download Persian Version:

https://daneshyari.com/article/8896624

Daneshyari.com

https://daneshyari.com/en/article/8896624
https://daneshyari.com/article/8896624
https://daneshyari.com

