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We investigate a fractional notion of gradient and divergence 
operator. We generalize the div-curl estimate by Coifman–
Lions–Meyer–Semmes to fractional div-curl quantities, ob-
taining, in particular, a nonlocal version of Wente’s lemma.
We demonstrate how these quantities appear naturally in 
nonlocal geometric equations, which can be used to obtain 
a theory for fractional harmonic maps analogous to the lo-
cal theory. Firstly, regarding fractional harmonic maps into 
spheres, we obtain a conservation law analogous to Shatah’s 
conservation law and give a new regularity proof analogous to 
Hélein’s for harmonic maps into spheres.
Secondly, we prove regularity for solutions to critical systems 
with nonlocal antisymmetric potentials on the right-hand side. 
Since the half-harmonic map equation into general target 
manifolds has this form, as a corollary, we obtain a new proof 
of the regularity of half-harmonic maps into general target 
manifolds following closely Rivière’s celebrated argument in 
the local case.
Lastly, the fractional div-curl quantities provide also a new, 
simpler, proof for Hölder continuity of W s,n/s-harmonic 
maps into spheres and we extend this to an argument 
for W s,n/s-harmonic maps into homogeneous targets. This 
is an analogue of Strzelecki’s and Toro–Wang’s proof for 
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n-harmonic maps into spheres and homogeneous target man-
ifolds, respectively.
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1. Introduction

Products of divergence-free and curl-free vector fields, the so-called div-curl-quantities, 
play a fundamental role in Geometric Analysis. They appear, for example, in the theory 
of compensated compactness in the form of the div-curl Lemma: let L2(

∧1
R

n) be the 
L2-space of 1-forms on Rn, or equivalently the space of vector fields L2(Rn, Rn). Given 
two sequences {Fk}k∈N, {Gk}k∈N in L2(

∧1
R

n) which weakly converge in L2(
∧1

R
n) to F

and G, respectively. In general, there is no reason that the product converges

Fk ·Gk
k→∞−−−−→ F ·G in D′(Rn). (1.1)

If we know, however, that (in distributional sense) div(Fk) = 0 and curl(Gk) = 0, or 
more generally assuming compactness of div(Fk) and curl(Gk) in H−1, then (1.1) indeed 
holds true. This phenomenon is known as compensated compactness and its theory was 
developed by Murat and Tartar in the late seventies [28,29,47–49], see also the more 
recent [8,10].

In [9] Coifman, Lions, Meyer, and Semmes found a relation between div-curl quantities 
and the Hardy space H1(Rn) (for a definition see Section 6).

Theorem 1.1 (Coifman–Lions–Meyer–Semmes). Let F ∈ Lp(
∧1

R
n) and g ∈ Ẇ 1,p′(Rn)

where p ∈ (1, ∞) and p′ = p
p−1 . Then, if

divF = 0,
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