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POSITIVE CLUSTERS FOR SMOOTH
PERTURBATIONS OF A CRITICAL ELLIPTIC
EQUATION IN DIMENSIONS FOUR AND FIVE

PIERRE-DAMIEN THIZY AND JÉRÔME VÉTOIS

Abstract. We construct clustering positive solutions for a per-
turbed critical elliptic equation on a closed manifold of dimension
n = 4, 5. Such a construction is already available in the literature
in dimensions n ≥ 6 (see for instance [10, 14, 30, 32, 36]) and not
possible in dimension 3 by [27]. This also provides new patterns for
the Lin–Ni [23] problem on closed manifolds and completes results
by Brézis and Li [8] about this problem.

1. Introduction and main result

Let (Mn, g) be a smooth closed Riemannian manifold of dimension
n ≥ 3, and 2� = 2n

n−2
be the critical Sobolev exponent for the embed-

dings of H1(M) into the Lebesgue spaces. Given smooth perturbations
(hε)ε of a function h0 inM , the asymptotic behavior of a sequence (uε)ε
of smooth positive functions satisfying

Δguε + hεuε = u2�−1
ε (1.1)

for all ε > 0 has been intensively studied in the last decades. Here Δg =
−divg(∇·) is the Laplace–Beltrami operator. If such a sequence (uε)ε
is bounded in H1(M), then we know from Struwe [41] that there exist
k ∈ N, k sequences (μ1,ε)ε, . . . , (μk,ε)ε of positive numbers converging
to 0, and k sequences (ξ1,ε)ε, . . . , (ξk,ε)ε of points converging to ξ1, . . . , ξk
in M such that

uε = u0 +
k∑

i=1

( √
n (n− 2)μi,ε

μ2
i,ε + dg(ξi,ε, ·)2

)n−2
2

+ o(1) (1.2)

up to a subsequence, where o(1) → 0 strongly and uε ⇀ u0 in H1(M)
as ε → 0. If the sequence (uε)ε is not uniformly bounded, then we say
that (uε)ε blows up and in this case, it follows from classical elliptic
estimates that k is non-zero in (1.2). If ξ1 = · · · = ξk = ξ0, then we say
that (uε)ε blows up with k peaks at the point ξ0.

In the case of dimension 3, it was proved by Li and Zhu [27] (see The-
orem 6.3 in Hebey [21]) that ξ1, . . . , ξk are necessarily distinct in (1.2).
By contrast, in the case of dimensions larger than or equal to 6, Druet
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