Journal of Functional Analysis ••• (••••) •••-•••

Contents lists available at ScienceDirect

Journal of Functional Analysis

www.elsevier.com/locate/jfa

The space of stable weak equivalence classes of measure-preserving actions

Lewis Bowen *,1, Robin Tucker-Drob 2

ARTICLE INFO

Article history: Received 29 June 2017 Accepted 6 December 2017 Available online xxxx Communicated by Stefaan Vaes

MSC: 37A35

Keywords: Weak containment Pmp actions

ABSTRACT

The concept of (stable) weak containment for measure-preserving actions of a countable group Γ is analogous to the classical notion of (stable) weak containment of unitary representations. If Γ is amenable then the Rokhlin lemma shows that all essentially free actions are weakly equivalent. However if Γ is non-amenable then there can be many different weak and stable weak equivalence classes. Our main result is that the set of stable weak equivalence classes naturally admits the structure of a Choquet simplex. For example, when $\Gamma = \mathbb{Z}$ this simplex has only a countable set of extreme points but when Γ is a nonamenable free group, this simplex is the Poulsen simplex. We also show that when Γ contains a nonabelian free group, this simplex has uncountably many strongly ergodic essentially free extreme points.

© 2017 Elsevier Inc. All rights reserved.

Contents

1.	Introduction	2
	1.1. Related literature	4
2.	Preliminaries	5

https://doi.org/10.1016/j.jfa.2017.12.003

0022-1236/© 2017 Elsevier Inc. All rights reserved.

Please cite this article in press as: L. Bowen, R. Tucker-Drob, The space of stable weak equivalence classes of measure-preserving actions, J. Funct. Anal. (2018), https://doi.org/10.1016/j.jfa.2017.12.003

^{*} Corresponding author.

E-mail address: lpbowen@math.utexas.edu (L. Bowen).

Supported in part by NSF grant DMS-1500389, NSF CAREER Award DMS-0954606.

² Supported in part by NSF grant DMS-1600904.

L. Bowen, R. Tucker-Drob / Journal of Functional Analysis ••• (••••) •••-•••

2.1. 2.2. 3. 4. 5. 6. Compactness 7. 8. 8.1. 8.2. 9. Convexity 10. 11. 12.

1. Introduction

2

A. Kechris introduced the notion of weak containment for group actions as an analogue of weak containment for unitary representations [21, II.10 (C)]. Given a countable group Γ and probability measure-preserving (pmp) actions $\mathbf{a} := \Gamma \curvearrowright^a (X, \mu)$, $\mathbf{b} := \Gamma \curvearrowright^b (Y, \nu)$ on standard probability spaces, we say \mathbf{a} is **weakly contained** in \mathbf{b} (denoted $\mathbf{a} \prec \mathbf{b}$) if for every finite measurable partition $\{P_i\}_{i=1}^n$ of X, finite $S \subseteq \Gamma$ and $\epsilon > 0$ there exists a measurable partition $\{Q_i\}_{i=1}^n$ of Y satisfying

$$|\mu(\gamma^a P_i \cap P_j) - \nu(\gamma^b Q_i \cap Q_j)| < \epsilon$$

for all $\gamma \in S$ and $1 \le i, j \le n$ (where the action of $\Gamma \curvearrowright^a X$ is denoted $\gamma^a x$ for $\gamma \in \Gamma, x \in X$ for example). We say **a** is **weakly equivalent** to **b**, denoted **a** \sim **b**, if both **a** \prec **b** and **b** \prec **a**.

The Rokhlin Lemma is essentially equivalent to the statement that for the group $\Gamma = \mathbb{Z}$ all essentially free³ pmp actions are weakly equivalent. Indeed, as remarked in [22], this statement holds for all countable amenable groups. However it fails for nonamenable groups because strong ergodicity is an invariant of weak equivalence [21, Prop. 10.6]. This motivates the problem of providing a description of the set of all weak equivalence classes, denoted by W_{Γ} , for a given group Γ .

We start with an equivalent definition of weak containment. Let **Cantor** denote any space homeomorphic to a Cantor set. Let Γ act on **Cantor**^{Γ} by $(\gamma x)(f) = x(\gamma^{-1}f)$. Let $\operatorname{Prob}_{\Gamma}(\mathbf{Cantor}^{\Gamma})$ denote the space of all Γ -invariant Borel probability measures on \mathbf{Cantor}^{Γ} equipped with the weak* topology. It is well-known that $\operatorname{Prob}_{\Gamma}(\mathbf{Cantor}^{\Gamma})$ is a

Please cite this article in press as: L. Bowen, R. Tucker-Drob, The space of stable weak equivalence classes of measure-preserving actions, J. Funct. Anal. (2018), https://doi.org/10.1016/j.jfa.2017.12.003

³ An action is essentially free if almost every point has trivial stabilizer.

Download English Version:

https://daneshyari.com/en/article/8896669

Download Persian Version:

https://daneshyari.com/article/8896669

<u>Daneshyari.com</u>