

Contents lists available at ScienceDirect

Journal of Functional Analysis

www.elsevier.com/locate/jfa

Hamilton differential Harnack inequality and W-entropy for Witten Laplacian on Riemannian manifolds

Songzi Li^{a,1}, Xiang-Dong Li^{b,c,*,2}

^a School of Mathematical Sciences, Beijing Normal University, No. 19, Xin Jie Kou Wai Da Jie, 100875, China

 ^b Academy of Mathematics and Systems Science, Chinese Academy of Sciences, 55, Zhongguancun East Road, Beijing, 100190, China

^c School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China

ARTICLE INFO

Article history: Received 5 July 2017 Accepted 29 September 2017 Available online 12 October 2017 Communicated by S. Brendle

MSC: primary 53C44, 58J35, 58J65 secondary 60J60, 60H30

Keywords: Hamilton differential Harnack inequality W-entropy Super Ricci flows

ABSTRACT

In this paper, we prove the Hamilton differential Harnack inequality for positive solutions to the heat equation of the Witten Laplacian on complete Riemannian manifolds with the CD(-K,m)-condition, where $m \in [n,\infty)$ and $K \geq 0$ are two constants. Moreover, we introduce the W-entropy and prove the W-entropy formula for the fundamental solution of the Witten Laplacian on complete Riemannian manifolds with the CD(-K,m)-condition and on compact manifolds equipped with (-K,m)-super Ricci flows.

@ 2017 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jfa.2017.09.017 0022-1236/© 2017 Elsevier Inc. All rights reserved.

^{*} Corresponding author.

E-mail addresses: songzi.li@bnu.edu.cn (S. Li), xdli@amt.ac.cn (X.-D. Li).

 $^{^{1}\,}$ Research partially supported by the China Scholarship Council and a Postdoctoral Fellowship of Beijing Normal University.

 $^{^2\,}$ Research supported by NSFC No. 11371351, Key Laboratory RCSDS, CAS, No. 2008DP173182, and a Hundred Talents Project of AMSS, CAS.

1. Introduction

Differential Harnack inequality is an important tool in the study of geometric PDEs. Let M be an n dimensional complete Riemannian manifold, u a positive solution to the heat equation

$$\partial_t u = \Delta u. \tag{1}$$

In their famous paper [6], Li and Yau proved that if $Ric \ge -K$, where $K \ge 0$ is a positive constant, then for all $\alpha > 1$,

$$\frac{|\nabla u|^2}{u^2} - \alpha \frac{\partial_t u}{u} \le \frac{n\alpha^2}{2t} + \frac{n\alpha^2 K}{\sqrt{2}(\alpha - 1)}.$$
(2)

In particular, if $Ric \ge 0$, then taking $\alpha \to 1$, the Li–Yau differential Harnack inequality holds

$$\frac{|\nabla u|^2}{u^2} - \frac{\partial_t u}{u} \le \frac{n}{2t}.$$
(3)

In [4], Hamilton proved a dimension free differential Harnack inequality on compact Riemannian manifolds with Ricci curvature bounded from below. More precisely, if M is a compact Riemannian manifold with

$$Ric \geq -K$$

then, for any positive and bounded solution u to the heat equation (1), it holds

$$\frac{|\nabla u|^2}{u^2} \le \left(\frac{1}{t} + 2K\right) \log(A/u),\tag{4}$$

where $A := \sup\{u(t, x) : x \in M, t \ge 0\}$. Indeed, the same result holds on complete Riemannian manifolds with Ricci curvature bounded from below. Under the same condition $Ric \ge -K$, Hamilton also proved the following differential Harnack inequality for any positive solution to the heat equation (1)

$$\frac{|\nabla u|^2}{u^2} - e^{2Kt} \frac{\partial_t u}{u} \le \frac{n}{2t} e^{4Kt}.$$
(5)

In particular, when K = 0, the above inequality reduces to the Li–Yau Harnack inequality (3) on complete Riemannian manifolds with non-negative Ricci curvature. Moreover, Hamilton [4] proved that, on compact Riemannian manifolds with $Ric \geq -K$, then any positive and bounded solution of the heat equation $\partial_t u = \Delta u$ with $0 < u \leq A$ satisfies

$$\frac{\partial_t u}{u} + \frac{|\nabla u|^2}{u^2} \le \frac{K}{1 - e^{-Kt}} \left[n + 4 \log(A/u) \right].$$
(6)

3264

Download English Version:

https://daneshyari.com/en/article/8896672

Download Persian Version:

https://daneshyari.com/article/8896672

Daneshyari.com