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with magnetic Neumann boundary conditions associated
with those data. We establish a sharp lower bound for the
first eigenvalue and show that the equality characterizes the

MSC: situation where the metric is a product. We then look at the

587150 case of a planar domain bounded by two closed curves and

35P15 obtain an explicit lower bound in terms of the geometry of
the domain. We finally discuss sharpness of this last estimate.
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1. Introduction

Let (£2,g) be a compact Riemannian manifold with boundary. Consider the trivial
complex line bundle Q x C over Q; its space of sections can be identified with C*°(Q, C),
the space of smooth complex valued functions on 2. Given a smooth real 1-form A on
Q we define a connection V4 on C*°(Q, C) as follows:
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Viu = Vxu—iA(X)u (1)

for all vector fields X on Q and for all u € C*°(£, C); here V is the Levi-Civita connection
associated to the metric g of 2. The operator

Ay = (VA*VA (2)

is called the magnetic Laplacian associated to the magnetic potential A, and the smooth
two form

B=dA
is the associated magnetic field. We will consider Neumann magnetic conditions, that is:
Viu=0 on 99, (3)

where N denotes the inner unit normal. Then, it is well-known that A4 is self-adjoint,
and admits a discrete spectrum

The above is a particular case of a more general situation, where £ — M is a complex
line bundle with a hermitian connection V¥, and where the magnetic Laplacian is defined
as AE = (VE)*VE

The spectrum of the magnetic Laplacian is very much studied in analysis (see for ex-
ample [3] and the references therein) and in relation with physics. For Dirichlet boundary
conditions, lower estimates of its fundamental tone have been worked out, in particu-
lar, when €2 is a planar domain and B is the constant magnetic field; that is, when the
function B is constant on € (see for example a Faber—Krahn type inequality in [9] and
the recent [12] and the references therein, also for Neumann boundary condition). The
case when the potential A is a closed 1-form is particularly interesting from the physi-
cal point of view (Aharonov—Bohm effect), and also from the geometric point of view.
For Dirichlet boundary conditions, there is a series of papers for domains with a pole,
when the pole approaches the boundary (see [1,13] and the references therein). Last but
not least, there is a Aharonov—Bohm approach to the question of nodal and minimal
partitions, see chapter 8 of [4].

For Neumann boundary conditions, we refer in particular to the paper [10], where the
authors study the multiplicity and the nodal sets corresponding to the ground state \;
for non-simply connected planar domains with harmonic potential (see the discussion
below).

Let us also mention the recent article [11] (chapter 7) where the authors establish a
Cheeger type inequality for A1; that is, they find a lower bound for A;(A4) in terms of
the geometry of €2 and the potential A. In the preprint [8], the authors approach the
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