On Green functions of second-order elliptic operators on Riemannian manifolds: The critical

 caseDebdip Ganguly, Yehuda Pinchover*
Department of Mathematics, Technion - Israel Institute of Technology, Haifa 32000, Israel

A R T I C L E I N F O

Article history:

Received 22 June 2017
Accepted 5 July 2017
Available online xxxx
Communicated by H. Brezis

$M S C$:

primary 35 J 08
secondary 31C35, 35A08, 35B09, 58G03

Keywords:

Fundamental solution
Green function
Critical operator
Positive solutions

Abstract

Let P be a second-order, linear, elliptic operator with real coefficients which is defined on a noncompact and connected Riemannian manifold M. It is well known that the equation $P u=0$ in M admits a positive supersolution which is not a solution if and only if P admits a unique positive minimal Green function on M, and in this case, P is said to be subcritical in M. If P does not admit a positive Green function but admits a global positive (super)solution, then such a solution is called a ground state of P in M, and P is said to be critical in M. We prove for a critical operator P in M, the existence of a Green function which is dominated above by the ground state of P away from the singularity. Moreover, in a certain class of Green functions, such a Green function is unique, up to an addition of a product of the ground states of P and P^{\star}. Under some further assumptions, we describe the behavior at infinity of such a Green function. This result extends and sharpens the celebrated result of $\mathrm{P} . \mathrm{Li}$ and $\mathrm{L} .-\mathrm{F}$. Tam concerning the existence of a symmetric Green function for the LaplaceBeltrami operator on a smooth and complete Riemannian manifold M.

© 2017 Elsevier Inc. All rights reserved.

[^0]http://dx.doi.org/10.1016/j.jfa.2017.07.004
0022-1236/® 2017 Elsevier Inc. All rights reserved.

1. Introduction

Let M be a noncompact and connected manifold of dimension $N \geq 2$ and of class C^{2}. We assume that ν is a positive measure on M, satisfying $\mathrm{d} \nu=f$ dvol, where f is a strictly positive function and vol is the volume form of M. On M we consider a second-order elliptic operator P with real coefficients which (in any coordinate system ($U ; x_{1}, \ldots, x_{N}$)) is of the divergence form

$$
\begin{equation*}
P u:=-\operatorname{div}[(A(x) \nabla u+u \tilde{b}(x))]+b(x) \cdot \nabla u+c(x) u . \tag{1.1}
\end{equation*}
$$

Here, the minus divergence is the formal adjoint of the gradient with respect to the measure ν. We assume that for every $x \in \Omega$ the matrix $A(x):=\left[a^{i j}(x)\right]$ is symmetric and that the real quadratic form

$$
\begin{equation*}
\xi \cdot A(x) \xi:=\sum_{i, j=1}^{N} \xi_{i} a^{i j}(x) \xi_{j} \quad \xi \in \mathbb{R}^{N} \tag{1.2}
\end{equation*}
$$

is positive definite. Moreover, throughout the paper it is assumed that P is locally uniformly elliptic, and that locally, the coefficients of P are sufficiently regular in M such that standard elliptic (local) regularity results hold true. Our results hold for example when A and f are locally Hölder continuous, b, \tilde{b} are Borel measurable vector fields in M of class $L_{\mathrm{loc}}^{p}(M)$, and $c \in L_{\mathrm{loc}}^{p / 2}(M)$ for some $p>N$. In fact, we need to assume further local regularity on the coefficients that guarantee the existence of the limit

$$
\begin{equation*}
\lim _{x \rightarrow x_{0}} \frac{u(x)}{v(x)} \tag{1.3}
\end{equation*}
$$

where u and v are positive solutions of the equation $P u=0$ in a punctured neighborhood of any $x_{0} \in M$, and the limit might be ∞ (for sufficient conditions that guarantee it, see for example [9] and references therein).

The formal adjoint P^{*} of the operator P is defined on its natural space $L^{2}(M, \mathrm{~d} \nu)$. When P is in divergence form (1.1) and $b=\tilde{b}$, the operator

$$
P u=-\operatorname{div}[(A \nabla u+u b)]+b \cdot \nabla u+c u,
$$

is symmetric in the space $L^{2}(M, \mathrm{~d} \nu)$. Throughout the paper, we call this setting the symmetric case.

By a solution v of the equation $P u=0$ in a domain $\Omega \subset M$, we mean $v \in W_{\mathrm{loc}}^{1,2}(\Omega)$ that satisfies the equation $P u=0$ in Ω in the weak sense. Subsolutions and supersolutions are defined similarly. We denote the cone of all positive solutions of the equation $P u=0$ in Ω by $\mathcal{C}_{P}(\Omega)$. We say that P is nonnegative in Ω (and denote it by $P \geq 0$ in Ω) if $\mathcal{C}_{P}(\Omega) \neq \emptyset$. We recall that in the symmetric case, by the Allegretto-Piepenbrink theorem,

https://daneshyari.com/en/article/8896701

Download Persian Version:

https://daneshyari.com/article/8896701

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: gdebdip@technion.ac.il (D. Ganguly), pincho@technion.ac.il (Y. Pinchover).

