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The growth-fragmentation equation describes a system of 
growing and dividing particles, and arises in models of cell 
division, protein polymerisation and even telecommunications 
protocols. Several important questions about the equation 
concern the asymptotic behaviour of solutions at large times: 
at what rate do they converge to zero or infinity, and what 
does the asymptotic profile of the solutions look like? Does 
the rescaled solution converge to its asymptotic profile at 
an exponential speed? These questions have traditionally 
been studied using analytic techniques such as entropy 
methods or splitting of operators. In this work, we present 
a probabilistic approach: we use a Feynman–Kac formula to 
relate the solution of the growth-fragmentation equation to 
the semigroup of a Markov process, and characterise the rate 
of decay or growth in terms of this process. We then identify 
the Malthus exponent and the asymptotic profile in terms of 
a related Markov process, and give a spectral interpretation 
in terms of the growth-fragmentation operator and its dual.
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1. Introduction

This work studies the asymptotic behaviour of solutions to the growth-fragmentation 
equation using probabilistic methods. The growth-fragmentation arises from mathemat-
ical models of biological phenomena such as cell division [37, §4] and protein polymer-
ization [21], as well as in telecommunications [28]. The equation describes the evolution 
of the density ut(x) of particles of mass x > 0 at time t ≥ 0, in a system whose dynamics 
are given as follows. Each particle grows at a certain rate depending on its mass and 
experiences ‘dislocation events’, again at a rate depending on its mass. At each such 
event, it splits into smaller particles in such a way that the total mass is conserved. 
The growth-fragmentation equation is a partial integro-differential equation and can be 
expressed in the form

∂tut(x) + ∂x(c(x)ut(x)) =
∞∫
x

ut(y)k(y, x)dy −K(x)ut(x), (1)

where c : (0, ∞) → (0, ∞) is a continuous positive function specifying the growth rate, 
k : (0, ∞) × (0, ∞) → R+ is a so-called fragmentation kernel, and the initial condition 
u0 is prescribed. In words, k(y, x) represents the rate at which a particle with size x
appears as the result of the dislocation of a particle with mass y > x. More precisely, 
the fragmentation kernel fulfils

k(x, y) = 0 for y > x, and
x∫

0

yk(x, y)dy = xK(x). (2)

The first requirement stipulates that after the dislocation of a particle, only particles 
with smaller masses can arise. The second reflects the conservation of mass at dislocation 
events, and gives the interpretation of K(x) as the total rate of dislocation of particles 
with size x.

This equation has been studied extensively over many years. A good introduction to 
growth-fragmentation equations and related equations in biology can be found in the 
monographs of Perthame [37] and Engel and Nagel [17], and a major issue concerns the 
asymptotic behaviour of solutions ut. Besides being interesting from the perspective of 
the differential equation, this asymptotic behaviour tells us something about the fitness 
of a related stochastic cell model [11,12]. Typically, one wishes to find a constant λ ∈ R, 
the Malthus exponent, for which e−λtut converges, in some suitable space, to a so-called 
asymptotic profile v. Ideally, we would also like to have some information about the rate 
of convergence; that is, we would like to ensure the existence of some β > 0 with the 
property that eβt(e−λtut − v) converges to zero.

For such questions, a key step in finding λ is the spectral analysis of the growth-
fragmentation operator
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