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BEURLING DIMENSION AND SELF-SIMILAR MEASURES

XING-GANG HE, QING-CAN KANG, MIN-WEI TANG∗, ZHI-YI WU

Abstract. In this paper the authors study the Beurling dimension of Bessel sets and frame
spectra of some self-similar measures on Rd and obtain their exact upper bound of the
dimensions, which is the same given by Dutkay et.al (Adv. Math. 226 (2011), 285-297).
The upper bound is attained in usual cases and some examples are given to explain our
theory.
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1. Introduction

Let μ be a Borel probability measure with compact support in Rd. We call μ a Fourier-

Bessel measure with a Bessel set or Bessel sequence Λ in Rd if∑
λ∈Λ

|〈 f , eλ〉|2 ≤ B‖ f ‖2, ∀ f ∈ L2(μ),

where eλ = e−2πi〈λ, x〉, 〈x, y〉 is the standard inner product in Rd and B is a Bessel bound.
Moreover, if in addition there exists A > 0 such that

A‖ f ‖2 ≤
∑
λ∈Λ

|〈 f , eλ〉|2 ≤ B‖ f ‖2, ∀ f ∈ L2(μ).

Then μ is called a (Fourier) frame spectral measure with a frame spectrum Λ, and A, B

are called the lower and upper frame bounds respectively. In particular, μ is called a Riesz
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