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In this paper, we systematically study weighted jump and 
variational inequalities for rough operators. More precisely, 
we show some weighted jump and variational inequalities for 
the families T := {Tε}ε>0 of truncated singular integrals and 
MΩ := {MΩ,t}t>0 of averaging operators with rough kernels, 
which are defined respectively by

Tεf(x) =
∫

|y|>ε

Ω(y′)
|y|n

f(x− y)dy

and
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MΩ,tf(x) =
1
tn

∫
|y|<t

Ω(y′)f(x− y)dy,

where the kernel Ω belongs to Lq(Sn−1) for q > 1.
© 2018 Elsevier Inc. All rights reserved.

1. Introduction

The jump and variational inequalities have been the subject of many recent articles in 
probability, ergodic theory and harmonic analysis. To present related results in a precise 
way, let us fix some notations. Let I ⊂ R be an interval. In the later use, I is either R+
or a dyadic interval. Given a family of complex numbers a = {at : t ∈ I} and ρ ≥ 1, the 
ρ-variation norm of the family a is defined by

‖a‖Vρ
= sup

(
|at0 | +

∑
k≥1

|atk − atk−1 |ρ
) 1

ρ , (1.1)

where the supremum runs over all finite increasing sequences {tk : k ≥ 0} ⊂ I. It is 
trivial that

‖a‖L∞(R) := sup
t∈R

|at| ≤ ‖a‖Vρ
for ρ ≥ 1. (1.2)

Via the definition (1.1), one may define the strong ρ-variation function Vρ(F) of a 
family F of functions. Given a family of Lebesgue measurable functions F = {Ft : t ∈ R}
defined on Rn, for any fixed x in Rn, the value of the strong ρ-variation function Vρ(F)
of the family F at x is defined by

Vρ(F)(x) = ‖{Ft(x)}t∈R‖Vρ
, ρ ≥ 1. (1.3)

Suppose A = {At}t>0 is a family of operators on Lp(Rn) (1 ≤ p ≤ ∞). The strong 
ρ-variation operator is simply defined as

Vρ(Af)(x) = ‖{At(f)(x)}t>0‖Vρ
, ∀f ∈ Lp(Rn).

It is easy to observe from the definition of ρ-variation norm that for any x if 
Vρ(Af)(x) < ∞, then {At(f)(x)}t>0 converges when t → 0 or t → ∞. In particu-
lar, if Vρ(Af) belongs to some function spaces such as Lp(Rn) or Lp,∞(Rn), then the 
sequence converges almost everywhere without any additional condition. This is why the 
mapping property of the strong ρ-variation operator is so interesting in ergodic theory 
and harmonic analysis. Also, by (1.2), for any f ∈ Lp(Rn) and x ∈ R

n, we have
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