

Contents lists available at ScienceDirect

Journal of Functional Analysis

Schrödinger operators with negative potentials and Lane–Emden densities

Lorenzo Brasco a,b, Giovanni Franzina c, Berardo Ruffini d,*

- ^a Dipartimento di Matematica e Informatica, Università degli Studi di Ferrara, Via Machiavelli 35, 44121 Ferrara, Italy
- ^b Aix Marseille Univ, CNRS, Centrale Marseille, I2M, 39 Rue Frédéric Joliot Curie, 13453 Marseille, France
- ^c Dipartimento di Matematica "G. Castelnuovo", Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy
- d Institut Montpelliérain Alexander Grothendieck, CNRS, Univ. Montpellier, 34095 Montpellier, Cedex 5, France

ARTICLE INFO

Article history: Received 27 April 2017 Accepted 6 October 2017 Available online 13 October 2017 Communicated by B. Schlein

MSC: 35P15 47A75 49S05

Keywords: Schrödinger operators Ground state energy Hardy inequalities Lane–Emden equation

ABSTRACT

We consider the Schrödinger operator $-\Delta + V$ for negative potentials V, on open sets with positive first eigenvalue of the Dirichlet–Laplacian. We show that the spectrum of $-\Delta + V$ is positive, provided that V is greater than a negative multiple of the logarithmic gradient of the solution to the Lane–Emden equation $-\Delta u = u^{q-1}$ (for some $1 \le q < 2$). In this case, the ground state energy of $-\Delta + V$ is greater than the first eigenvalue of the Dirichlet–Laplacian, up to an explicit multiplicative factor. This is achieved by means of suitable Hardy-type inequalities, that we prove in this paper.

© 2017 Elsevier Inc. All rights reserved.

E-mail addresses: lorenzo.brasco@unife.it (L. Brasco), franzina@mat.uniroma1.it (G. Franzina), berardo.ruffini@umontpellier.fr (B. Ruffini).

^{*} Corresponding author.

Contents

1.	Introd	luction	1826
	1.1.	Foreword	1826
	1.2.	Aim of the paper	1828
	1.3.	Main results	1829
	1.4.	Plan of the paper	1830
2.	Prelin	ninaries	1831
	2.1.	Notation	1831
	2.2.	Lane–Emden densities: bounded sets	1832
	2.3.	Lane–Emden densities: general sets	1834
3.	Hardy	-Lane-Emden inequalities	1836
4.	Sobole	ev embeddings and densities	1839
5.	Hardy	-Lane-Emden inequalities for sets with positive spectrum	1845
6.	Lower	bounds for the ground state energy	1846
7.	Applie	cations	1851
	7.1.	N-dimensional ball	1851
	7.2.	An infinite slab	1852
	7.3.	A rectilinear wave-guide	1853
Acknowledgments			1857
Appe	ndix A.	A local L^{∞} estimate for Lane–Emden densities	1857
Refer	ences .		1863

1. Introduction

1.1. Foreword

Let $V \in L^2_{loc}(\mathbb{R}^N)$ be a real-valued potential such that $V \leq 0$ and let us consider the Schrödinger operator $\mathcal{H}_V := -\Delta + V$, acting on the domain

$$\mathfrak{D}(\mathcal{H}_V) := H^2(\mathbb{R}^N) \cap \{ u \in L^2(\mathbb{R}^N) : V u \in L^2(\mathbb{R}^N) \}.$$

Observe that the hypothesis $V \in L^2_{\mathrm{loc}}(\mathbb{R}^N)$ entails the inclusion

$$C_0^{\infty}(\mathbb{R}^N) \subset \mathfrak{D}(\mathcal{H}_V),$$

thus $\mathfrak{D}(\mathcal{H}_V)$ is dense in $L^2(\mathbb{R}^N)$. The operator $\mathcal{H}_V: \mathfrak{D}(\mathcal{H}_V) \to L^2(\mathbb{R}^N)$ is symmetric and self-adjoint as well, thanks to the fact that V is real-valued (see [15, Example, p. 68]). The *spectrum* of \mathcal{H}_V is the set

$$\sigma(\mathcal{H}_V) = \mathbb{R} \setminus \rho(\mathcal{H}_V),$$

where $\rho(\mathcal{H}_V)$ is the resolvent set of \mathcal{H}_V , defined as the collection of real numbers λ such that $\mathcal{H}_V - \lambda$ is bijective and its inverse is a bounded linear operator.

A distinguished subset of $\sigma(\mathcal{H}_V)$ is given by the collection of those λ such that the kernel of $\mathcal{H}_V - \lambda$ is nontrivial. In this case, the stationary Schrödinger equation

$$\mathcal{H}_V u = \lambda u, \tag{1.1}$$

Download English Version:

https://daneshyari.com/en/article/8896746

Download Persian Version:

https://daneshyari.com/article/8896746

Daneshyari.com