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In the context of local Tb theorems with Lp testing conditions 
we prove an enhanced Cotlar’s inequality. This is related 
to the problem of removing the so called buffer assumption 
of Hytönen–Nazarov, which is the final barrier for the full 
solution of S. Hofmann’s problem. We also investigate the 
problem of extending the Hytönen–Nazarov result to non-
homogeneous measures. We work not just with the Lebesgue 
measure but with measures μ in Rd satisfying μ(B(x, r)) ≤
Crn, n ∈ (0, d]. The range of exponents in the Cotlar type 
inequality depend on n. Without assuming buffer we get 
the full range of exponents p, q ∈ (1, 2] for measures with 
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n ≤ 1, and in general we get p, q ∈ [2 − ε(n), 2], ε(n) > 0. 
Consequences for (non-homogeneous) local Tb theorems are 
discussed.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Let μ be a Radon measure on Rd. We say that a function bQ is an Lp(μ)-admissible 
test function on a cube Q ⊂ R

d (with constant B1), if

(1) spt bQ ⊂ Q,
(2) μ(Q) =

∫
Q
bQ dμ, and

(3)
∫
Q
|bQ|p dμ ≤ B1μ(Q).

A long standing problem (even for the Lebesgue measure μ = dx) asks whether the L2

boundedness of a Calderón–Zygmund operator T follows if we are given p, q ∈ (1, ∞), 
and for every cube Q an Lp(μ)-admissible test function bQ so that∫

Q

|TbQ|q
′
dμ � μ(Q)

and an Lq(μ)-admissible test function pQ so that∫
Q

|T ∗pQ|p
′
dμ � μ(Q).

In the case that both exponents are simultaneously small, i.e. p, q < 2 (or even p < 2 =
q), this is still not known in this original form. However, Hytönen–Nazarov [6] showed in 
the Lebesgue measure case that the L2 boundedness follows if one assumes the buffered
testing conditions ∫

2Q

|TbQ|q
′
dx +

∫
2Q

|T ∗pQ|p
′
dx � |Q|.

Notice that the estimate over 2Q is in fact equivalent to the same estimate over the 
whole space Rd. A key thing in the Lebesgue measure case is that if 1/p +1/q ≤ 1 (which 
includes the case p = q = 2), then the original testing conditions automatically imply 
the stronger buffered testing conditions by Hardy’s inequality. The non-homogeneous 
version for p = q = 2 (without buffer) is by the first named author and Lacey [7].

The need for the buffer assumption is related to delicate problems in passing from 
maximal truncations to the original operator. In the Hytönen–Nazarov paper [6] the 
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