

Contents lists available at ScienceDirect

Journal of Functional Analysis

www.elsevier.com/locate/jfa

The character and the wave front set correspondence in the stable range

癯

Functional Analysis

Tomasz Przebinda

University of Oklahoma, Norman, OK, USA

A R T I C L E I N F O

Article history: Received 10 February 2017 Accepted 3 January 2018 Available online 5 January 2018 Communicated by P. Delorme

MSC: primary 22E45 secondary 22E46, 22E30

Keywords: Howe correspondence Characters Wave front set

Contents

1.	Introduction	1285
2.	The Weil representation	1287
3.	A mixed model of the Weil representation	1289
4.	The restriction of the Weil representation to the dual pair	1291
5.	The functions $\Psi \in C_c^{\infty}(\widehat{G}'')$ act on \mathcal{H}_{Π} via integral kernel operators	1295
6.	The equality $\Theta_{\Pi} = \Theta'_{\Pi'}$	1298
7.	The equality $WF(\Pi) = \tau_{\mathfrak{g}}(\tau_{\mathfrak{g}'}^{-1}(WF(\Pi')))$	1302
Ackno	wledgment	1304
Refere	ences	1304

E-mail addresses: tprzebinda@gmail.com, tprzebinda@ou.edu.

ABSTRACT

We relate the distribution characters and the wave front sets of unitary representation for real reductive dual pairs of type I in the stable range.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

In the late seventies Roger Howe formulated his theory of rank for irreducible unitary representations Π of any connected cover of the symplectic group $\operatorname{Sp}_{2n}(\mathbb{R})$, see [12]. The symplectic group has a maximal parabolic subgroup P with the Levi factor isomorphic to $\operatorname{GL}_n(\mathbb{R})$ and the unipotent radical N isomorphic as a Lie group to the space of the symmetric $n \times n$ matrices with the addition. In particular any connected cover of N splits. The Spectral Theorem implies that the restriction of Π to N is supported on the union of some $\operatorname{GL}_n(\mathbb{R})$ -orbits in the dual of N, which may be viewed as the space of the symmetric forms on \mathbb{R}^n . The rank of Π is the maximal rank of a symmetric form in this support.

A surprising result is that the representations Π of rank r < n are very special. The support of $\Pi|_{\mathbb{N}}$ is a single $\operatorname{GL}_n(\mathbb{R})$ -orbit of forms β of signature (p,q) with p+q=r. Furthermore, Π factors through a double cover $\widetilde{\operatorname{Sp}}_{2n}(\mathbb{R})$ of $\operatorname{Sp}_{2n}(\mathbb{R})$ and remains irreducible when restricted to some other maximal parabolic subgroup $\widetilde{P}_1 \subseteq \widetilde{\operatorname{Sp}}_{2n}(\mathbb{R})$. The Levi factor of P_1 is isomorphic to $\operatorname{GL}_r(\mathbb{R}) \times \operatorname{Sp}_{2(n-r)}(\mathbb{R})$ and the unipotent radical N_1 is a two-step nilpotent group. The isometry group of a fixed form β is isomorphic to $O_{p,q} \subseteq \operatorname{GL}_r(\mathbb{R})$. According to [13, Theorem 1.3], there is an irreducible unitary representation Π' of $\widetilde{O}_{p,q}$ such that $\Pi|_{\widetilde{P}_1}$ is induced from a representation involving Π' of the subgroup $(\widetilde{O}_{p,q} \times \widetilde{\operatorname{Sp}}_{2(n-r)}(\mathbb{R}))N_1 \subseteq \widetilde{P}_1$. The argument is based on the Stone von Neumann Theorem [30], the theory of the Weil Representation [32] and the Mackey Imprimitivity Theorem, [20].

In particular the operators of $\Pi|_{\tilde{P}_1}$ are as explicit as the operators of Π' . However the remaining operators remain obscure. Fortunately there is a different description of the representations Π and Π' .

The groups $(O_{p,q}, \operatorname{Sp}_{2(n-r)}(\mathbb{R}))$ form a dual pair in $\operatorname{Sp}_{2n}(\mathbb{R})$ and there is Howe's correspondence for all real dual pairs (G, G'), [14, Theorem 1]. As shown by Jian-Shu Li in his thesis, the representations Π and Π' are in Howe's correspondence. Li extended Howe's theory of rank to all dual pairs of type I and proved that it provides a bijection of representations of \widetilde{G} and \widetilde{G}' equal to Howe's correspondence, see [18] and [17]. The condition of low rank is transformed to the dual pair being in the stable range, with G' – the smaller member. Now the operators $\Pi(g), g \in \widetilde{G}$, are much better understood because the Weil representation is known explicitly, see [23] or section 2 below, for a coordinate free approach.

Nevertheless an explicit description of all the $\Pi(g)$, $g \in \widetilde{G}$, seems out of reach. Instead one may try to describe the distribution character Θ_{Π} of Π , [8], in terms of $\Theta_{\Pi'}$. This approach has a solid foundation, because for the dual pair (U_n, U_n) the correspondence of the characters is governed by the Cauchy determinant identity, see [22, Introduction]. In fact [22, Definition 2.17] provides a candidate $\Theta'_{\Pi'}$ for Θ_{Π} in terms of $\Theta_{\Pi'}$. (For a more precise version see [4, Formula (7)].) Let $G'_1 \subseteq G'$ be the Zariski identity component. Here is our first theorem. Download English Version:

https://daneshyari.com/en/article/8896750

Download Persian Version:

https://daneshyari.com/article/8896750

Daneshyari.com