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submanifolds in a Euclidean ball, the classical monotonicity
formula implies that if such a submanifold passes through the
centre of the ball, then its area is at least that of the equatorial
disk. Recently Brendle and Hung proved a sharp area bound
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Monotonicity for minimal submanifolds when the prescribed point is not the

Minimal submanifolds centre of the ball, which resolved a conjecture of Alexander,

Geometric flows Hoffman and Osserman. Their proof involves asymptotic anal-
ysis of an ingeniously chosen vector field, and the divergence
theorem.

In this article we prove a sharp ‘moving-centre’ monotonicity
formula for minimal submanifolds, which implies the afore-
mentioned area bound. We also describe similar moving-centre
monotonicity formulae for stationary p-harmonic maps, mean
curvature flow and the harmonic map heat flow.
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0. Introduction

For many geometric partial differential equations, monotonicity formulae play an es-
sential role and their discovery often leads to deep and fundamental results for those
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systems. Monotonicity is a particularly useful tool in the study of variational problems,
and for regularity theory (see for example [3,5,11,14,13,24,27] and references therein).
These formulae often control the evolution of energy-type quantities with respect to
changes in scale, or time.

An important example is the classical monotonicity formula for minimal submanifolds
— critical points of the area functional — which states:

Proposition 0.1. Let $¥ be a minimal submanifold in R™. Then so long as 0¥ N B* = (),
we have
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Here B = B™(0,r) denotes the Euclidean ball of radius r about the origin in R™.
Thus the area ratio r—*|X N B"| is monotone on balls with fixed centre, and so comparing
to the limiting density as 7 N\, 0 yields that any minimal submanifold ¥* C B? with
0% C 0BJ', which passes through the origin, satisfies the sharp area bound
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with equality if and only if ¥ is a flat k-disk.

In the case that the minimal submanifold ¥ C B” does not necessarily pass through
the centre of the ball, Alexander, Hoffman and Osserman [2] conjectured (see also [20])
the following sharp area bound, which has recently been proven in full generality by
Brendle and Hung [7] (see also Corollary 1.5). Alexander and Osserman had previously
proven the conjecture only in the case of simply connected surfaces [1].

Theorem 0.2 (/7]). Let ¥ be a minimal submanifold in the ball B" with 0% C OBM.
Then
XN B
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where d = d(0,X) is the distance from X to the centre of the ball.

The proof of Theorem 0.2 by Brendle-Hung involves the choice of a clever, but some-
what geometrically mysterious, vector field W. They apply the divergence theorem to
W away from small balls B.(y), where y € ¥ N B,,, and obtain the estimate in the limit
as € = 0.

In this paper, we show that the area bound (0.3) in fact arises from a sharp ‘moving-
centre’ monotonicity formula, in which the centres of the extrinsic balls are allowed to
move, and the scale is adjusted in a particular manner:
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