ARTICLE IN PRESS

YJFAN:7848

Journal of Functional Analysis ••• (••••) •••-•••

Free transport for interpolated free group factors

Michael Hartglass^a, Brent Nelson^{b,*}

 ^a Department of Mathematics and Computer Science, Santa Clara University, CA, United States
^b Department of Mathematics, University of California, Berkeley, CA, United States

ARTICLE INFO

Article history: Received 4 March 2017 Accepted 2 August 2017 Available online xxxx Communicated by Stefaan Vaes

Keywords: Free probability Free group factors Transport

ABSTRACT

In this article, we study a form of free transport for the interpolated free group factors, extending the work of Guionnet and Shlyakhtenko for the usual free group factors [11]. Our model for the interpolated free group factors comes from a canonical finite von Neumann algebra $\mathcal{M}(\Gamma, \mu)$ associated to a finite, connected, weighted graph (Γ, V, E, μ) [12,13]. With this model, we use an operator-valued version of Voiculescu's free difference quotient introduced in [13] to state a Schwinger–Dyson equation which is valid for the generators of $\mathcal{M}(\Gamma, \mu)$. We construct free transport for appropriate perturbations of this equation. Also, $\mathcal{M}(\Gamma, \mu)$ can be constructed using the machinery of Shlyakhtenko's operator-valued semicircular systems [24].

@ 2017 Elsevier Inc. All rights reserved.

0. Introduction

The interpolated free group factors $L(\mathbb{F}_t)$ for $t \in (1, \infty]$ were discovered and developed independently by Dykema [5] and Rădulescu [22]. They satisfy the following properties:

* Corresponding author.

E-mail addresses: mhartglass@scu.edu (M. Hartglass), brent@math.berkeley.edu (B. Nelson).

 $\label{eq:http://dx.doi.org/10.1016/j.jfa.2017.08.002} 0022\text{-}1236/ \odot 2017 \ Elsevier \ Inc. \ All \ rights \ reserved.$

Please cite this article in press as: M. Hartglass, B. Nelson, Free transport for interpolated free group factors, J. Funct. Anal. (2017), http://dx.doi.org/10.1016/j.jfa.2017.08.002

ARTICLE IN PRESS

M. Hartglass, B. Nelson / Journal of Functional Analysis ••• (••••) •••-•••

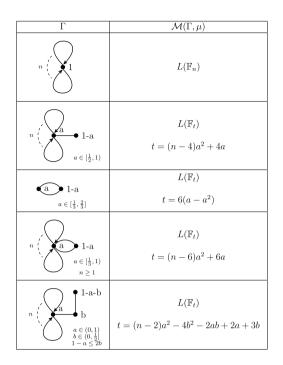


Fig. 1. von Neumann algebras corresponding to simple graphs.

•
$$L(\mathbb{F}_t) * L(\mathbb{F}_s) = L(\mathbb{F}_{s+t})$$

- $pL(\mathbb{F}_t)p = L(\mathbb{F}_r)$ where $r = 1 + \frac{t-1}{\operatorname{tr}(p)^2}$ and p is a nonzero projection in $L(\mathbb{F}_t)$.
- If $t \in \mathbb{N} \cup \{\infty\}$ then $L(\mathbb{F}_t)$ is the usual free group factor on t generators.

For non-integer t, these share many of the same properties of their integer counterparts. Namely, they are non- Γ , strongly solid II₁ factors. In this paper, we demonstrate another similarity: the existence of free transport.

For our purposes, the most convenient way to describe an interpolated free group factor is via a weighted graph. Specifically, we consider a finite, connected, undirected, weighted graph (Γ, V, E, μ) with vertex set V, edge set E, and weighting $\mu : V \to (0, 1]$ satisfying $\sum_{v \in V} \mu(v) = 1$. One can associate to this data a C*-algebra $\mathcal{S}(\Gamma, \mu)$ and a von Neumann algebra $\mathcal{M}(\Gamma, \mu)$. A simple non-degeneracy condition on the weighting determines whether $\mathcal{M}(\Gamma, \mu)$ is a factor, and when $\mathcal{S}(\Gamma, \mu)$ is simple with unique trace. If $\mathcal{M}(\Gamma, \mu)$ is a factor, then it is necessarily isomorphic to $L(\mathbb{F}_t)$ where

$$t = 1 - \sum_{v \in V} \mu(v)^2 + \sum_{v \in V} \mu(v) \sum_{w \sim v} n_{v,w} \mu(w).$$

See Equation (1) and the discussion immediately preceding it. In particular, if Γ consists of a single vertex with *n*-loops, $\mathcal{M}(\Gamma, \mu) \cong L(\mathbb{F}_n)$, and $\mathcal{S}(\Gamma, \mu)$ is the C*-algebra generated by a free semicircular system (*cf.* Fig. 1). The algebras $\mathcal{M}(\Gamma, \mu)$ were initially studied in [8] in determining the isomorphism classes of von Neumann algebras arising from planar Download English Version:

https://daneshyari.com/en/article/8896812

Download Persian Version:

https://daneshyari.com/article/8896812

Daneshyari.com