ELSEVIER

Representations by some quinary quadratic forms of level 8 *

Ick Sun Eum
Department of Mathematics Education, Dongguk University-Gyeongju, Gyeongju, Republic of Korea

A R T I C L E I N F O

Article history:

Received 28 September 2017
Received in revised form 27
February 2018
Accepted 28 February 2018
Available online 15 March 2018
Communicated by L. Smajlovic

MSC:

primary 11F37
secondary 11 E 25 , 11F25

Keywords:

Representations by quadratic forms
Eisenstein series
Fricke involution
Hecke operators
Modular forms

Abstract

Let $r_{Q}(n)$ be the representation number of a nonnegative integer n by a certain quinary quadratic form Q of level 8. Then the associated theta function is a modular form of weight $5 / 2$ for $\Gamma_{0}(8)$ associated with the character ($\frac{8}{4}$). We express this theta function as a linear combination of Hecke eigenforms and find the general formula of the representation number $r_{Q}(n)$. As a consequence, we show that $r_{Q}(n)$ satisfies some partially multiplicative relations by applying Fricke involution and Hecke operators on the associated theta functions.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Let A be an $r \times r$ positive definite symmetric matrix over \mathbb{Z} with $\operatorname{det}(A)=N$ such that both A and $N A^{-1}$ have even diagonal entries. Further let

[^0]\[

Q(\mathbf{x})=\frac{1}{2} \mathbf{x}^{T} A \mathbf{x} \quad for \mathbf{x}=\left($$
\begin{array}{c}
x_{1} \\
\vdots \\
x_{r}
\end{array}
$$\right) \in \mathbb{Z}^{r}
\]

be the associated quadratic form and

$$
\Theta_{Q}(\tau)=\sum_{\mathbf{x} \in \mathbb{Z}^{r}} e^{2 \pi i Q(\mathbf{x}) \tau}=\sum_{n=0}^{\infty} r_{Q}(n) q^{n}
$$

the associated theta function, where $\tau \in \mathbb{H}=\{\tau \in \mathbb{C} \mid \operatorname{Im}(\tau)>0\}, q=e^{2 \pi i \tau}$ and

$$
r_{Q}(n)=\#\left\{\mathbf{x} \in \mathbb{Z}^{r} \mid Q(\mathbf{x})=n\right\}
$$

is the representation number of n by Q. When $r=2 k$ is even, then $\Theta_{Q}(\tau)$ belongs to the space $\mathcal{M}_{k}\left(N, \chi_{(-1)^{k} N}\right)$ of modular forms of weight k for $\Gamma_{0}(N)$ associated with the character $\chi_{(-1)^{k} N}=\left(\frac{(-1)^{k} N}{\cdot}\right)$. Suppose that $\chi_{(-1)^{k} N}$ is a primitive Dirichlet character modulo N. In [5] and [4], it was shown that there are only finitely many pairs (k, N) such that $\operatorname{dim}_{\mathbb{C}} \mathcal{M}_{k}\left(N, \chi_{(-1)^{k} N}\right)=2$ and that for such pairs $\Theta_{Q}(\tau)$ is uniquely determined. This was proved by using the fact that for such pairs $\operatorname{dim}_{\mathbb{C}} \mathcal{S}_{k}\left(N, \chi_{(-1)^{k} N}\right)=0$ and $\mathcal{M}_{k}\left(N, \chi_{(-1)^{k} N}\right)$ are spanned by Eisenstein series with the same eigenvalues, where $\mathcal{S}_{k}\left(N, \chi_{(-1)^{k} N}\right)$ is the space of cusp forms of weight k for $\Gamma_{0}(N)$ associated with the character $\chi_{(-1)^{k} N}$. Further $r_{Q}(n)$ satisfies

$$
r_{Q}\left(p^{2} n\right)=\frac{r_{Q}\left(p^{2}\right) r_{Q}(n)}{r_{Q}(1)}
$$

for any positive integer n and a prime $p \nmid N n$ and any quadratic form of level N and rank $r=2 k$.

Now let h be a positive integer and A a 5×5 positive definite symmetric integral matrix with $\operatorname{det}(A)=2^{2 h}$ such that both A and $8 A^{-1}$ have even diagonal entries. Also we denote by Q and $\Theta_{Q}(\tau)$ the associated quadratic form and theta function, respectively. Then $\Theta_{Q}(\tau)$ belongs to the space $\mathcal{M}_{\frac{5}{2}}\left(8, \chi_{8}\right)$ of modular forms of weight $5 / 2$ for $\Gamma_{0}(8)$ associated with the character $\chi_{8}([10, \S 2])$. In this paper we shall show the following by adopting the idea in [5] and [4]. We shall first show that if $k \in \frac{1}{2}+\mathbb{Z}$ with $k \geq \frac{5}{2}$ and $\chi_{4 N}$ is primitive, then $\operatorname{dim}_{\mathbb{C}} \mathcal{S}_{k}\left(4 N, \chi_{4 N}\right)=0$ if and only if $k=\frac{5}{2}$ and $4 N=8($ Corollary $2.3(\mathrm{i}))$. From this result we shall prove that $\operatorname{dim}_{\mathbb{C}} \mathcal{M}_{\frac{5}{2}}\left(8, \chi_{8}\right)=3$ and construct the basis elements $f_{1}(\tau), f_{2}(\tau)$ and $f_{3}(\tau)$ of $\mathcal{M}_{\frac{5}{2}}\left(8, \chi_{8}\right)$ by using Eisenstein series (Corollary 2.3(ii) and $\S 4)$. Then we shall express $\Theta_{Q}(\tau)$ as a linear combination of such basis elements, namely

$$
\Theta_{Q}(\tau)=f_{1}(\tau)+\left(2^{9-h}-8 r_{Q}(1)\right) f_{2}(\tau)+r_{Q}(1) f_{3}(\tau)
$$

which implies that $\Theta_{Q}(\tau)$ depends only on $r_{Q}(1)$ (Theorem 5.2(i)). Moreover we shall provide a general formula for $r_{Q}(n)$ as follows. Let $n=2^{\mu} r^{2} t$, where μ is a nonnegative

https://daneshyari.com/en/article/8896860

Download Persian Version:

https://daneshyari.com/article/8896860

Daneshyari.com

[^0]: कर This work was supported by the Dongguk University Research Fund of 2017 and the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2017R1C1B5017567). E-mail address: zandc@dongguk.ac.kr.

