

Contents lists available at ScienceDirect

Journal of Number Theory

Representations by some quinary quadratic forms of level 8^{*}

Ick Sun Eum

Department of Mathematics Education, Dongguk University-Gyeongju, Gyeongju, Republic of Korea

ARTICLE INFO

Article history: Received 28 September 2017 Received in revised form 27 February 2018 Accepted 28 February 2018 Available online 15 March 2018 Communicated by L. Smajlovic

MSC: primary 11F37 secondary 11E25, 11F25

Keywords:
Representations by quadratic forms
Eisenstein series
Fricke involution
Hecke operators
Modular forms

ABSTRACT

Let $r_Q(n)$ be the representation number of a nonnegative integer n by a certain quinary quadratic form Q of level 8. Then the associated theta function is a modular form of weight 5/2 for $\Gamma_0(8)$ associated with the character $(\frac{8}{\cdot})$. We express this theta function as a linear combination of Hecke eigenforms and find the general formula of the representation number $r_Q(n)$. As a consequence, we show that $r_Q(n)$ satisfies some partially multiplicative relations by applying Fricke involution and Hecke operators on the associated theta functions.

 $\ensuremath{{}^{\odot}}$ 2018 Elsevier Inc. All rights reserved.

1. Introduction

Let A be an $r \times r$ positive definite symmetric matrix over \mathbb{Z} with $\det(A) = N$ such that both A and NA^{-1} have even diagonal entries. Further let

^{\(\pi\)} This work was supported by the Dongguk University Research Fund of 2017 and the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2017R1C1B5017567). E-mail address: zandc@dongguk.ac.kr.

$$Q(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T A \mathbf{x} \quad \text{for } \mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_r \end{pmatrix} \in \mathbb{Z}^r$$

be the associated quadratic form and

$$\Theta_Q(\tau) = \sum_{\mathbf{x} \in \mathbb{Z}^r} e^{2\pi i Q(\mathbf{x})\tau} = \sum_{n=0}^{\infty} r_Q(n) q^n$$

the associated theta function, where $\tau \in \mathbb{H} = \{\tau \in \mathbb{C} \mid \text{Im}(\tau) > 0\}, q = e^{2\pi i \tau}$ and

$$r_Q(n) = \#\{\mathbf{x} \in \mathbb{Z}^r \mid Q(\mathbf{x}) = n\}$$

is the representation number of n by Q. When r=2k is even, then $\Theta_Q(\tau)$ belongs to the space $\mathcal{M}_k(N,\chi_{(-1)^kN})$ of modular forms of weight k for $\Gamma_0(N)$ associated with the character $\chi_{(-1)^kN} = \left(\frac{(-1)^kN}{r}\right)$. Suppose that $\chi_{(-1)^kN}$ is a primitive Dirichlet character modulo N. In [5] and [4], it was shown that there are only finitely many pairs (k,N) such that $\dim_{\mathbb{C}} \mathcal{M}_k(N,\chi_{(-1)^kN}) = 2$ and that for such pairs $\Theta_Q(\tau)$ is uniquely determined. This was proved by using the fact that for such pairs $\dim_{\mathbb{C}} \mathcal{S}_k(N,\chi_{(-1)^kN}) = 0$ and $\mathcal{M}_k(N,\chi_{(-1)^kN})$ are spanned by Eisenstein series with the same eigenvalues, where $\mathcal{S}_k(N,\chi_{(-1)^kN})$ is the space of cusp forms of weight k for $\Gamma_0(N)$ associated with the character $\chi_{(-1)^kN}$. Further $r_Q(n)$ satisfies

$$r_Q(p^2n) = \frac{r_Q(p^2)r_Q(n)}{r_Q(1)}$$

for any positive integer n and a prime $p \nmid Nn$ and any quadratic form of level N and rank r = 2k.

Now let h be a positive integer and A a 5×5 positive definite symmetric integral matrix with $\det(A) = 2^{2h}$ such that both A and $8A^{-1}$ have even diagonal entries. Also we denote by Q and $\Theta_Q(\tau)$ the associated quadratic form and theta function, respectively. Then $\Theta_Q(\tau)$ belongs to the space $\mathcal{M}_{\frac{5}{2}}(8,\chi_8)$ of modular forms of weight 5/2 for $\Gamma_0(8)$ associated with the character χ_8 ([10, §2]). In this paper we shall show the following by adopting the idea in [5] and [4]. We shall first show that if $k \in \frac{1}{2} + \mathbb{Z}$ with $k \geq \frac{5}{2}$ and χ_{4N} is primitive, then $\dim_{\mathbb{C}} \mathcal{S}_k(4N,\chi_{4N}) = 0$ if and only if $k = \frac{5}{2}$ and 4N = 8 (Corollary 2.3(i)). From this result we shall prove that $\dim_{\mathbb{C}} \mathcal{M}_{\frac{5}{2}}(8,\chi_8) = 3$ and construct the basis elements $f_1(\tau)$, $f_2(\tau)$ and $f_3(\tau)$ of $\mathcal{M}_{\frac{5}{2}}(8,\chi_8)$ by using Eisenstein series (Corollary 2.3(ii) and §4). Then we shall express $\Theta_Q(\tau)$ as a linear combination of such basis elements, namely

$$\Theta_Q(\tau) = f_1(\tau) + (2^{9-h} - 8r_Q(1))f_2(\tau) + r_Q(1)f_3(\tau)$$

which implies that $\Theta_Q(\tau)$ depends only on $r_Q(1)$ (Theorem 5.2(i)). Moreover we shall provide a general formula for $r_Q(n)$ as follows. Let $n = 2^{\mu}r^2t$, where μ is a nonnegative

Download English Version:

https://daneshyari.com/en/article/8896860

Download Persian Version:

https://daneshyari.com/article/8896860

<u>Daneshyari.com</u>