On perfect powers that are sums of two Fibonacci numbers ${ }^{*}$

Florian Luca ${ }^{\text {a,b,c }}$, Vandita Patel ${ }^{\text {d,* }}$
${ }^{\text {a }}$ School of Mathematics, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, South Africa
${ }^{\text {b }}$ Max Planck Institute for Mathematics, Vivatsgasse 7, 53111 Bonn, Germany
${ }^{\text {c }}$ Department of Mathematics, Faculty of Sciences, University of Ostrava, 30 dubna 22, 70103 Ostrava 1, Czech Republic
${ }^{\text {d }}$ Department of Mathematics, University of Toronto, Bahen Centre, 40 St. George St., Room 6290, Toronto, Ontario, M5S 2E4, Canada

A R T I C L E I N F O

Article history:

Received 5 October 2017
Received in revised form 9 February 2018
Accepted 14 February 2018
Available online xxxx
Communicated by M. Pohst

$M S C$:

primary 11D61
secondary 11B39

Keywords:

Exponential equation
Hemachandra numbers
Fibonacci numbers

A B S T R A C T

We study the equation $F_{n}+F_{m}=y^{p}$, where F_{n} and F_{m} are respectively the n-th and m-th Fibonacci numbers and $p \geq 2$. We find all solutions under the assumption $n \equiv m(\bmod 2)$.
© 2018 Elsevier Inc. All rights reserved.

[^0]https://doi.org/10.1016/j.jnt.2018.02.003
0022-314X/® 2018 Elsevier Inc. All rights reserved.

1. Introduction

Fibonacci numbers are prominent as well as being ancient. Their first known occurrence dates back to around 200BC, (see [5], [8]) in the earliest known treatise on Sanskrit prosody (poetry meters and verse in Sanskrit) entitled Chandahśāstra and authored by Pingala. This work is eight chapters in the late Sūtra style and therefore quite complex and not fully comprehensible without commentary. The Fibonacci numbers appear again (much later this time) in the work of Virahāñka (700AD). Virahānka's original work has been lost, but is nevertheless cited clearly in the work of Gopāla (c. 1135); below is a translation of [9, pg. 101];
"For four, variations of meters of two [and] three being mixed, five happens. For five, variations of two earlier - three [and] four, being mixed, eight is obtained. In this way, for six, [variations] of four [and] of five being mixed, thirteen happens. And like that, variations of two earlier meters being mixed, seven morae [is] twenty-one. In this way, the process should be followed in all mātrā-vṛttas."

The sequence is discussed rigorously and most concisely in the work of Jain scholar Acharya Hemachandra (c. 1150, living in what is known today as Gujarat) about 50 years earlier than Fibonacci's Liber Abaci (1202). Hemachandra, just like Pingala, Virahāñka and Gopāla, was in fact studying Sanskrit prosody and not mathematics. Given a verse with an ending of n beats to fill, where the choice of beats consists of length 1 (called short) and length 2 (called long), in how many ways can one finish the verse? The answer lies within the fundamental sequence, defined by the recurrence;

$$
H_{n+2}=H_{n+1}+H_{n}, \quad H_{1}=1, \quad H_{2}=2, \quad n \geq 1,
$$

where Hemachandra makes the concise argument that any verse that is to be filled with n beats must end with a long or a short beat. Therefore, this recurrence is enough to answer the question: given a verse with n beats remaining, one has H_{n} ways of finishing the prosody, with H_{n} satisfying (\diamond).

Since the 12 th century, the Hemachandra/Fibonacci numbers have sat in the spotlight of modern number theory. They have been vastly studied; intrinsically for their beautiful identities but also for their numerous applications, for example, the golden ratio has a regular appearance in art, architecture and the natural world!

Finding all perfect powers in the Fibonacci sequence was a fascinating long-standing conjecture. In 2006, this problem was completely solved by Y. Bugeaud, M. Mignotte and S. Siksek (see [4]), who innovatively combined the modular approach with classical linear forms in logarithms. In addition to this, Y. Bugeaud, F. Luca, M. Mignotte and S. Siksek also found all of the integer solutions to

$$
\begin{equation*}
F_{n} \pm 1=y^{p} \quad p \geq 2 \tag{1}
\end{equation*}
$$

https://daneshyari.com/en/article/8896866

Download Persian Version:

https://daneshyari.com/article/8896866

Daneshyari.com

[^0]: Th The first-named author is supported by grants CPRR160325161141 and an A-rated researcher award both from the NRF of South Africa and by grant no. 17-02804S of the Czech Granting Agency.

 * Corresponding author.

 E-mail addresses: florian.luca@wits.ac.za (F. Luca), vandita@math.utoronto.ca (V. Patel).

