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We study the equation Fn + Fm = yp, where Fn and Fm are 
respectively the n-th and m-th Fibonacci numbers and p ≥ 2. 
We find all solutions under the assumption n ≡ m (mod 2).
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1. Introduction

Fibonacci numbers are prominent as well as being ancient. Their first known occur-
rence dates back to around 200BC, (see [5], [8]) in the earliest known treatise on Sanskrit 
prosody (poetry meters and verse in Sanskrit) entitled Chandah. śāstra and authored by 
Piṅgala. This work is eight chapters in the late Sūtra style and therefore quite complex 
and not fully comprehensible without commentary. The Fibonacci numbers appear again 
(much later this time) in the work of Virahāṅka (700AD). Virahāṅka’s original work has 
been lost, but is nevertheless cited clearly in the work of Gopāla (c. 1135); below is a 
translation of [9, pg. 101];

“For four, variations of meters of two [and] three being mixed, five happens. For five, 
variations of two earlier – three [and] four, being mixed, eight is obtained. In this way, 
for six, [variations] of four [and] of five being mixed, thirteen happens. And like that, 
variations of two earlier meters being mixed, seven morae [is] twenty-one. In this way, 
the process should be followed in all mātrā–vr.ttas.”

The sequence is discussed rigorously and most concisely in the work of Jain scholar 
Acharya Hemachandra (c. 1150, living in what is known today as Gujarat) about 50 years 
earlier than Fibonacci’s Liber Abaci (1202). Hemachandra, just like Piṅgala, Virahāṅka 
and Gopāla, was in fact studying Sanskrit prosody and not mathematics. Given a verse 
with an ending of n beats to fill, where the choice of beats consists of length 1 (called 
short) and length 2 (called long), in how many ways can one finish the verse? The answer 
lies within the fundamental sequence, defined by the recurrence;

Hn+2 = Hn+1 + Hn, H1 = 1, H2 = 2, n ≥ 1, (♦)

where Hemachandra makes the concise argument that any verse that is to be filled with 
n beats must end with a long or a short beat. Therefore, this recurrence is enough to 
answer the question: given a verse with n beats remaining, one has Hn ways of finishing 
the prosody, with Hn satisfying (♦).

Since the 12th century, the Hemachandra/Fibonacci numbers have sat in the spotlight 
of modern number theory. They have been vastly studied; intrinsically for their beautiful 
identities but also for their numerous applications, for example, the golden ratio has a 
regular appearance in art, architecture and the natural world!

Finding all perfect powers in the Fibonacci sequence was a fascinating long-standing 
conjecture. In 2006, this problem was completely solved by Y. Bugeaud, M. Mignotte 
and S. Siksek (see [4]), who innovatively combined the modular approach with classical 
linear forms in logarithms. In addition to this, Y. Bugeaud, F. Luca, M. Mignotte and 
S. Siksek also found all of the integer solutions to

Fn ± 1 = yp p ≥ 2, (1)
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